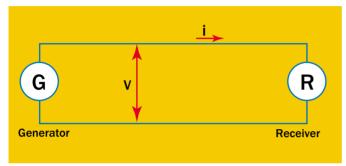
Measurement of electrical power

Instantaneous, mean, active, reactive and apparent electrical power, power factor, etc. We would like to remind you about these basic parameters in electronics and about three-phase measurement methods.

Definition of electrical power

At a given moment, when a current i travels from generator G to receiver R in the direction defined by the voltage \mathbf{v} delivered by the generator (figure 1), the instantaneous power supplied to the receiver R is equal to product v.i.



fiaure 1

If the voltage and current are DC, the mean power V-I is equal to the instantaneous power v-i.

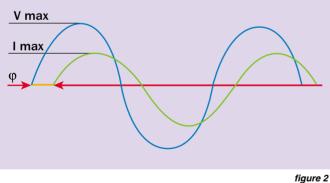
If the voltage and current are **sinusoidal AC**, there is generally a **phase shift** $\boldsymbol{\phi}$ between the voltage and the current (figure 2).

The **instantaneous values** of voltage **v** and current **i** have the form:

 $v = V_{max} \cos \omega t$

 $i = I_{max} \cos (\omega t - \phi)$

Where ω , the pulse, is proportional to the frequency F ($\omega = 2\pi$ F).



The **phase shift** ϕ is, conventionally, counted as positive when the current is delayed in relation to the voltage.

The instantaneous power has a value of: $V_{max} \cdot I_{max} \cdot \cos \omega \cdot \cos (\omega t \cdot \phi)$. You must take the average value of this product during a period to obtain the expression of the power provided by generator G to receiver R. This power is called the active power and is expressed by the formula:

$$\mathbf{P} = \frac{\mathbf{V}_{max} \cdot \mathbf{I}_{max}}{\sqrt{2}} \cos \varphi = \mathbf{V}_{eff} \cdot \mathbf{I}_{eff} \cdot \cos \varphi$$

The wattmeters provide the expression of this product, either by causing a deviation of the pointer in the case of a device with an electrodynamic or ferrodynamic moving coil, or by supplying a DC current or a voltage proportional to the product in the case of electronic wattmeters; this current or this voltage is then applied to an analogue or digital display.

The existence of a phase shift ϕ between the current and the voltage leads, for AC currents, to the introduction of 3 additional quantities:

The apparent power S = V_{eff} · **I**_{eff}, in VA (volt-amperes), defining the voltage V_{eff} not to be exceeded (insulator breakdown, increase in core loss) and the intensity I_{eff} circulating in the receivers.

co

$$s \phi = \frac{P}{S} = \frac{P}{V_{eff} \cdot I_{eff}}$$

when the current and voltage are sinusoidal quantities.

The reactive power Q = V_{eff} \cdot **I**_{eff} \cdot **sin** ϕ , in rva (reactive volt-amperes). The latter may be directly measured by a wattmeter if for voltage V_{max} · cos ωt we substitute a phase-shifted voltage of $\pi/2$, i.e. $V_{max} \propto \cos (\omega t - \pi/2).$

The mean product measured will be

$$\begin{split} &V_{\text{max}} \boldsymbol{\cdot} I_{\text{max}} \boldsymbol{\cdot} \cos \left(\omega t \cdot \pi/2 \right) x \cos \left(\omega t \cdot \phi \right) \text{ which is expressed by:} \\ &Q = \frac{V_{\text{max}} I_{\text{max}}}{\sqrt{2}} \cos \left(\pi/2 \cdot \phi \right) = V_{\text{eff}} \boldsymbol{\cdot} I_{\text{eff}} \boldsymbol{\cdot} \sin \phi \end{split}$$

Knowing P and Q, we can calculate the apparent power and the power factor:

Apparent power: **S** = $\sqrt{\mathbf{P}^2 + \mathbf{Q}^2}$

Power factor: **PF** = **P**/**S** = **P**/ $\sqrt{P^2+Q^2}$

Knowing the parameters defined above: active power, reactive power, apparent power, power factor, is fundamental in electrical engineering and enables accurate calculation of the characteristics of the equipment used: yield, load, $\cos \varphi$, utilisation limits. The wattmeters used for these measurements are classified in three major families: electrodynamic, ferrodynamic and electronic.

Measurement of active power

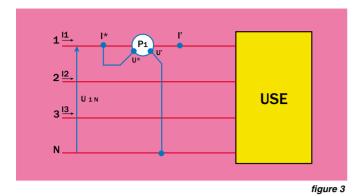
4-wire balanced three-phase measurement (3 phases + neutral)

The intensities circulating in the three phases are equal in terms of rms values $I_1 = I_2 = I_3$ and show the same phase shift φ in relation to the respective voltages of the 3 phases.

If U_{1N} is the simple voltage measured between phase 1 and neutral, power P1 supplied by phase 1 will be obtained by connecting a wattmeter as shown in figure 3.

Its value will be: $P_1 = U_{1N} \cdot I_1 \cdot \cos \varphi$ The total power supplied P will be equal to 3 P1.

THEORY



Note: The expression $\mathsf{P}_{\scriptscriptstyle 1} = \mathsf{U}_{\scriptscriptstyle 1N} \cdot \mathsf{I}_{\scriptscriptstyle 1} \cdot \cos \phi$ in the scalar product of the 2 vectors

 $\begin{array}{c} \overrightarrow{U_{1N}} \text{ and } \overrightarrow{I_1} \text{ which enables use of the notation} \\ \overrightarrow{P_1} = \overrightarrow{U_{1N}} \overrightarrow{I_1} \\ \text{and in three-phase:} \\ \overrightarrow{P} = \overrightarrow{U_{1N}} \overrightarrow{I_1} + \overrightarrow{U_{2N}} \overrightarrow{I_2} + \overrightarrow{U_{3N}} \overrightarrow{I_3} \end{array}$

Measurement in 3-wire balanced three-phase (3 phases no neutral)

The intensities circulating in the three phases are equal $I_1 = I_2 = I_3$. An artificial neutral is created using three resistors R, R et R'. The sum R' + r must be equal to R (r is the resistance of the voltage circuit of the unit).

This returns us to the previous case with $U_{\mbox{\tiny 1N}}$ between phase 1 and the artificial neutral (figure 4).

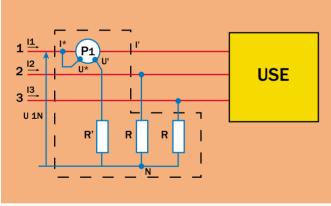


figure 4

 P_1 = Power supplied on phase 1

Totale P supplied = $3 U_{1N} \cdot I_1 \cdot \cos \varphi = 3P_1$.

With many wattmeters, the balanced three-phase measurements (3 phases no neutral) are performed directly; the artificial neutral point recreated by the resistors R, R and R' is included in the instrument (astatic wattmeter, CdA 778 wattmeter, for example). This design is shown in the diagram by the dotted section.

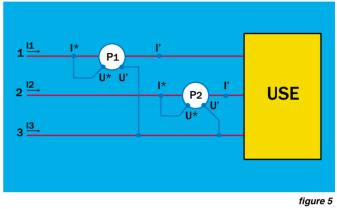
Measurement in 3-wire unbalanced three-phase (3 phases no neutral) - method using two wattmeters.

Whether the circuit is balanced or not in the absence of a neutral, there remains $I_1 + I_2 + I_3 = 0$.

In this case, the general expression of the power given above is simplified

and the measurement of the total power may be carried out using two wattmeters (*figure 5*).

 $U_{\rm 13}$ and $U_{\rm 23}$ are the phase-to-phase voltages measured respectively between phase 1 and phase 3 and then between phase 2 and phase 3.



Two cases may arise:

a) $P_1 \ge 0$ and $P_2 \ge 0$, then $P_{total} = P_1 + P_2$

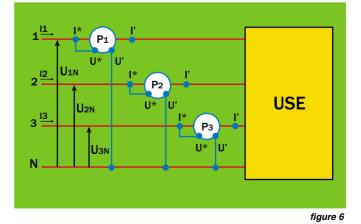
b) one wattmeter deviates to the right and the other is as far as it will go to the left. To read the second; transfer the feed wires to the voltage circuit: $U^* \cdot U'$ becomes $U' \cdot U^*$.

The value will be considered negative and we will obtain: $P_{total} = P_1 - P_2$

If it is a digital wattmeter we will add together the algebraic values displayed.

Note: it is possible to use a single wattmeter successively connected to 2 positions, using an inverter switch. This type of switch contains auxiliary contacts ensuring short-circuiting of the unused contacts.

Measurement in 4-wire balanced three-phase (3 phases + neutral)



We obtain $P_{total} = P_1 + P_2 + P_3$ (figure 6).

In this case, we must use 3 wattmeters and add the readings together. If the measurement is stable, we can successively carry out 3 measurements with a single wattmeter. Caution: it is recommended to use a system preventing the intensity circuits from being cut off during switching.

No. 16 CONTACT