

EurotestXC MI 3152 EurotestXC 2,5 kV MI 3152H Instruction manual

Version 1.2.2, Code no. 20 752 411

Distributor:

Manufacturer:

METREL d.d. Ljubljanska cesta 77 1354 Horjul Slovenia

web site: http://www.metrel.si e-mail: metrel@metrel.si

Mark on your equipment certifies that this equipment meets the requirements of the EU (European Union) concerning safety and electromagnetic compatibility regulations

© 2015 METREL

The trade names Metrel, Smartec, Eurotest, Autosequence are trademarks registered or pending in Europe and other countries.

No part of this publication may be reproduced or utilized in any form or by any means without permission in writing from METREL.

Table of Contents

1	General description	7
	1.1 Warnings and notes	7 8 8 9 . 11 . 13
2	Instrument set and accessories	
	2.1 Standard set MI 3152 EurotestXC2.2 Standard set MI 3152H EurotestXC 2,5 kV2.2.1 Optional accessories	. 15
3	Instrument description	. 16
	3.1 Front panel	. 17 . 18 . 20
4	Instrument operation	. 22
	4.1 General meaning of keys. 4.2 General meaning of touch gestures. 4.3 Virtual keyboard. 4.4 Display and sound. 4.4.1 Terminal voltage monitor. 4.4.2 Battery indication. 4.4.3 Measurement actions and messages 4.4.4 Result indication. 4.5 Instruments main menu. 4.6 General Settings. 4.6.1 Language. 4.6.2 Power Save.	23 24 25 25 26 26 28 29 30
	4.6.2 Fower Save 4.6.3 Date and time 4.6.4 Settings 4.6.5 Initial Settings 4.6.6 About. 4.7 Instrument profiles 4.8 Workspace Manager menu 4.8.1 Workspaces and Exports. 4.8.2 Workspace Manager main menu 4.8.3 Operations with Workspaces 4.8.4 Operations with Exports 4.8.5 Adding a new Workspace.	. 31 . 32 . 34 . 35 . 36 . 37 . 37 . 38
	4.8.6 Opening a Workspace	. 41 . 41
	4.8.8 Importing a Workspace	. 42

	4.8.9	9 Exporting a Workspace	. 43
5	Mem	ory Organizer	. 44
	5.1	Memory Organizer menu	. 44
	5.1.1		
	5.1.2		
	5.1.3	· · · · · · · · · · · · · · · · · · ·	
6	Sing	le tests	
	6.1	Selection modes	65
	6.1.1		
	6.1.2		
	6.1.3		
	6.1.4		
	6.1.5		
	6.1.6		
	6.1.7	•	
	6.1.8	Recall single test results screen	. 75
7	Test	s and measurements	. 76
	7.1	Voltage, frequency and phase sequence	. 76
	7.2	R iso – Insulation resistance	
	7.3	The DAR and PI diagnostic (MI 3152H only)	. 80
	7.4	R low - Resistance of earth connection and equipotential bonding	
	7.5	Continuity - Continuous resistance measurement with low current	
	7.5.1	Compensation of test leads resistance	
	7.6	Testing RCDs	
	7.6.1	RCĎ Uc – Contact voltage	
		P RCD t – Trip-out time	
	7.6.3	•	
	7.7	RCD Auto – RCD Auto test	
	7.8	Z loop – Fault loop impedance and prospective fault current	
	7.9	Zs rcd – Fault loop impedance and prospective fault current in system with RCD	
	_	Z loop m Ω – High precision fault loop impedance and prospective fault current	
		Z line – Line impedance and prospective short-circuit current	
	7.12	Z line m Ω – High precision line impedance and prospective short-circuit current	
	7.13	Voltage Drop	
	7.14	Earth – Earth resistance (3-wire test)	107
	7.15	Earth 2 clamp – Contactless earthing resistance measurement (with two current	400
)	
	7.16	Ro – Specific earth resistance	
	7.17	Power	
	7.18	Harmonics	
	7.19	Currents	
	7.20	ISFL – First fault leakage current (MI 3152 only)	
	7.21	IMD – Testing of insulation monitoring devices (MI 3152 only)	
	7.22	Rpe – PE conductor resistance	
	7.23	Illumination	126
8	Auto	tests	128
	8.1	AUTO TT – Auto test sequence for TT earthing system	129
		AUTO TN (RCD) – Auto test sequence for TN earthing system with RCD	
		AUTO TN – Auto test sequence for TN earthing system without RCD	
	8.4	AUTO IT – Auto test sequence for IT earthing system (MI 3152 only)	

9	Con	nmunication	137
	9.1	USB and RS232 communication	137
	9.2	Bluetooth communication	137
10) Upg	rading the instrument	139
11	Maiı	ntenance	140
	11.1	Fuse replacement	140
	11.2	Cleaning	
	11.3	Periodic calibration	141
	11.4	Service	141
12	2 Tec	nnical specifications	142
	12.1	R iso – Insulation resistance	142
	12.2	Diagnostic test (MI 3152H only)	143
	12.3	R low – Resistance of earth connection and equipotential bonding	144
	12.4	Continuity – Continuous resistance measurement with low current	144
	12.5	RCD testing	145
	12.5	5.1 RCD Uc – Contact voltage	145
	12.5	5.2 RCD t – Trip-out time	146
	12.5	5.3 RCD I – Trip-out current	146
	12.6	Z loop – Fault loop impedance and prospective fault current	
	12.7	Zs rcd –Fault loop impedance and prospective fault current in system with RCD	
	12.8	Z line – Line impedance and prospective short-circuit current	
	12.9	Voltage Drop	
		Rpe – PE conductor resistance	
		Earth – Earth resistance (3-wire measurement)	150
		Earth 2 clamp – Contactless earthling resistance measurement (with two current	
		3)	
		Ro – Specific earth resistance	
		Voltage, frequency, and phase rotation	
		4.1 Phase rotation	
		4.2 Voltage	
		4.3 Frequency	
		4.4 Online terminal voltage monitor	
		Currents	
		Power	
		Harmonics	
		ISFL – First fault leakage current (MI 3152 only)	
		IMD (MI 3152 only)	
		Illumination	
		General data	
Αį	opendi	x A – Fuse table – IPSC	158
Αį	opendi	x B – Profile Notes	162
	B.1	Profile Austria (ALAJ)	162
	B.2	Profile Finland (profile code ALAC)	
	B.3	Profile Hungary (profile code ALAD)	
	B.4	Profile Switzerland (profile code ALAI)	
	B.5	Profile UK (profile code ALAB)	
	B.6	Profile AUS/NZ (profile code ÁLAE)	
Αı	pendi	x C – Commanders (A 1314, A 1401)	
		A	
	C 1	Warnings related to safety	170

MI 3152(H) Eurotest XC (2.5 kV	MI 3152	(H) I	Eurotesi	tXC	(2.5	kV
---------------------------------------	---------	-------	----------	-----	------	----

Table of contents

Appendi	ix D – Structure objects	172
C.4	Operation of commanders	171
	Description of commanders	
C.2	Battery	170

1 General description

1.1 Warnings and notes

1.1.1 Safety warnings

In order to reach high level of operator safety while carrying out various measurements using the EurotestXC instrument, as well as to keep the test equipment undamaged, it is necessary to consider the following general warnings:

- Read this user manual carefully, otherwise the use of the instrument may be dangerous for the operator, the instrument or for the equipment under test!
- Consider warning markings on the instrument (see next chapter for more information).
- If the test equipment is used in a manner not specified in this user manual, the protection provided by the equipment could be impaired!
- Do not use the instrument or any of the accessories if any damage is noticed!
- Consider all generally known precautions in order to avoid risk of electric shock while dealing with hazardous voltages!
- Use only standard or optional test accessories supplied by your distributor!
- In case a fuse has blown follow the instructions in this manual in order to replace it! Use only fuses that are specified!
- Service, calibration or adjustment of instruments and accessories is only allowed to be carried out by a competent authorized person!
- Do not use the instrument in AC supply systems with voltages higher than 550 Va.c.
- Consider that protection category of some accessories is lower than of the instrument. Test tips and Tip commander have removable caps. If they are removed the protection falls to CAT II. Check markings on accessories!
 - cap off, 18 mm tip: CAT II up to 1000 V
 - cap on, 4 mm tip: CAT II 1000 V / CAT III 600 V / CAT IV 300 V
- The instrument comes supplied with rechargeable Ni-MH battery cells. The cells should only be replaced with the same type as defined on the battery compartment label or as described in this manual. Do not use standard alkaline battery cells while the power supply adapter is connected, otherwise they may explode!
- Hazardous voltages exist inside the instrument. Disconnect all test leads, remove the power supply cable and switch off the instrument before removing battery compartment cover.
- Do not connect any voltage source on C1/C2 inputs. It is intended only for connection of current clamps. Maximal input voltage is 3 V!

1.1.2 Markings on the instrument

Read the Instruction manual with special care to safety operation«. The symbol requires an action!

Mark on your equipment certifies that it meets European Union requirements for EMC, LVD, and ROHS regulations.

This equipment should be recycled as electronic waste.

1.1.3 Warnings related to safety of batteries

- When connected to an installation, the instruments battery compartment can contain hazardous voltage inside! When replacing battery cells or before opening the battery/fuse compartment cover, disconnect any measuring accessory connected to the instrument and turn off the instrument.
- Ensure that the battery cells are inserted correctly otherwise the instrument will not operate and the batteries could be discharged.
- Do not recharge alkaline battery cells!
- Use only power supply adapter delivered from the manufacturer or distributor of the test equipment!

1.1.4 Warnings related to safety of measurement functions

Insulation resistance

- Insulation resistance measurement should only be performed on de-energized objects!
- Do not touch the test object during the measurement or before it is fully discharged! Risk of electric shock!

Continuity functions

Continuity measurements should only be performed on de-energized objects!

1.1.5 Notes related to measurement functions

Insulation resistance

- The measuring range is decreased if using Plug commander.
- If a voltage of higher than 30 V (AC or DC) is detected between test terminals, the measurement will not be performed.

Diagnostic test

- If any insulation resistance values ($R_{ISO}(15 \text{ s})$ or $R_{ISO}(60 \text{ s})$) are over-ranged the **DAR** factor is not calculated. The result field is blank: DAR:
- If any insulation resistance values ($R_{ISO}(60 \text{ s})$ or $R_{ISO}(10 \text{ min})$) are over-ranged the **PI** factor is not calculated. The result field is blank: PI:

R low, Continuity

- If a voltage of higher than 10 V (AC or DC) is detected between test terminals, the measurement will not be performed.
- Parallel loops may influence on test results.

Earth, Earth 2 clamp, Ro

- If voltage between test terminals is higher than 10 V (Earth, Earth 2 clamps) or 30 V (Ro) the measurement will not be performed.
- Contactless earthing resistance measurement (using two current clamps) enables simple testing of individual earthing rods in large earthing system. It is especially suitable for use in urban areas because there is usually no possibility to place the test probes.
- For two clamps earth resistance measurement clamps A 1018 and A 1019 should be used. Clamps A 1391 are not supported. The distance between clamps should be at least 30 cm.
- For specific earth resistance measurements ρ Adaptor A 1199 should be used.

RCD t, RCD I, RCD Uc, RCD Auto

- Parameters set in one function are also kept for other RCD functions!
- Selective (time-delayed) RCDs have delayed response characteristics. As the contact voltage pre-test or other RCD tests influence the time delayed RCD it takes a certain period to recover into normal state. Therefore a time delay of 30 s is inserted before performing trip-out test by default.
- Portable RCDs (PRCD, PRCD-K and PRCD-S) are tested as general (non-delayed) RCDs. Trip-out times, trip-out currents and contact voltage limits are equal to limits of general (non-delayed) RCDs.
- The Zs rcd function takes longer to complete but offers much better accuracy of fault loop resistance (in comparison to the R_L sub-result in Contact voltage function).
- Auto test is finished without x5 tests in case of testing the RCD types A, F, B and B+ with rated residual currents of $I_{dN} = 300$ mA, 500 mA, and 1000 mA or testing the RCD type AC with rated residual current of $I_{dN} = 1000$ mA. In this case Auto test result passes if all other results pass, and indications for x5 are omitted.
- Auto test is finished without x1 tests in case of testing the RCD types B and B+ with rated residual currents of I_{dN} = 1000 mA. In this case Auto test result passes if all other results pass, and indications for x1 are omitted (MI 3152 only).
- Tests for sensitivity Idn(+) and Idn(-) are omitted for selective type RCD.
- Trip out time measurement for B and B+ type RCDs in AUTO function is made with sinewave test current, while trip-out current measurement is made with DC test current (MI 3152 only).

Z loop, Zs rcd

- The specified accuracy of tested parameters is valid only if the mains voltage is stable during the measurement.
- Fault loop impedance (Z loop) measurements will trip an RCD.
- The Zs rcd measurement does not normally trip an RCD. However, the RCD can trip if a leakage current from L to PE already flows.

Z line, Voltage drop

- In case of measurement of Z_{Line-Line} with the instrument test leads PE and N connected together the instrument will display a warning of dangerous PE voltage. The measurement will be performed anyway.
- Specified accuracy of tested parameters is valid only if mains voltage is stable during the measurement.
- \rightarrow If the reference impedance is not set the value of Z_{REF} is considered as 0.00 Ω.

Power, Harmonics, Currents

 Consider polarity of current clamp (arrow on test clamp should be oriented toward connected load), otherwise result will be negative!

Illumination

- LUXmeter type B and LUXmeter type C probes are supported by the instrument.
- Artificial light sources reach full power of operation after a period of time (see technical data for light sources) and should be therefore switched on for this period of time before the measurements are taken.
- For accurate measurement make sure that the milk glass bulb is lit without any shadows cast by hand, body or other unwanted objects.
- Refer to the Illuminance handbook for more information.

Rpe

- The specified accuracy of tested parameters is valid only if the mains voltage is stable during the measurement.
- Measurement will trip an RCD if the parameter RCD is set to 'No'.
- The measurement does not normally trip an RCD if the parameter RCD is set to 'Yes'. However, the RCD can trip if a leakage current from L to PE already flows.

IMD

It is recommended to disconnect all appliances from the tested supply to receive regular test results. Any connected appliance will influence the insulation resistance threshold test.

Z line m Ω , Z loop m Ω

A 1143 Euro Z 290 A adapter is required for this measurements.

Auto Tests

- ightharpoonup Voltage drop (dU) measurement in each Auto test sequence is enabled only if Z_{REF} is set.
- See other notes related to single tests / measurements of selected Auto test sequence.

1.2 Testing potential on PE terminal

In certain instances faults on the installation's PE wire or any other accessible metal bonding parts can become exposed to live voltage. This is a very dangerous situation since the parts connected to the earthing system are considered to be free of potential. In order to properly

check the installation against this fault the key should be used as an indicator prior to performing live tests.

Examples for application of PE test terminal

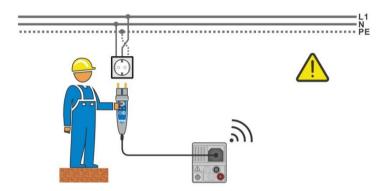


Figure 1.1: Reversed L and PE conductors (plug commander)

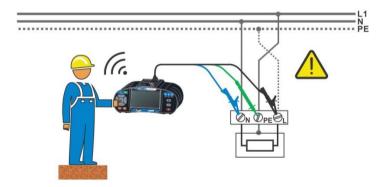


Figure 1.2: Reversed L and PE conductors (application of 3-wire test lead)

Warning!

Reversed phase and protection conductors! The most dangerous situation! If dangerous voltage is detected on the tested PE terminal, stop all measurements immediately and ensure the cause of the fault is eliminated before proceeding with any activity!

Test procedure

- Connect test cable to the instrument.
- Connect test leads to the object under test, see Figure 1.1 and Figure 1.2.
- Touch test probe for at least 2 seconds.

 If PE terminal is connected to phase voltage the warning message is displayed, instrument buzzer is activated and further measurements are disabled in Z loop, Zs rcd, RCD tests and Auto test sequences.

Notes

- PE test terminal is active in the RCD tests, Z loop, Zs rcd, Z line, dU and Voltage measurements and Auto test sequences only!
- For correct testing of PE terminal, the key has to be touched for at least 2 seconds.
- Make sure to stand on non-isolated floor while carrying out the test, otherwise test result may be wrong!

1.3 Battery and charging

The instrument uses six AA size alkaline or rechargeable Ni-MH battery cells. Nominal operating time is declared for cells with nominal capacity of 2100 mAh. Battery condition is always displayed in the upper right display part. In case the battery is too weak the instrument will be turned off automatically.

The battery is charged whenever the power supply adapter is connected to the instrument. Internal circuit controls charging and assures maximum battery lifetime.

Refer to chapters **3.2 Connector panel** and **4.4.2 Battery indication** for power socket polarity and battery indication.

Notes:

- The charger in the instrument is a pack cell charger. This means that the battery cells are connected in series during the charging. The battery cells have to be equivalent (same charge condition, same type and age).
- If the instrument is not to be used for a long period of time, remove all batteries from the battery compartment.
- Alkaline or rechargeable Ni-MH batteries (size AA) can be used. METREL recommends only using rechargeable batteries with a capacity of 2100 mAh or above.
- Unpredictable chemical processes can occur during the charging of battery cells that have been left unused for a longer period (more than 6 months). In this case METREL recommends repeating the charge/discharge cycle at least 2-4 times.
- If no improvement is achieved after several charge / discharge cycles, then each battery cell should be checked (by comparing battery voltages, testing them in a cell charger, etc). It is very likely that only some of the battery cells are deteriorated. One different battery cell can cause an improper behaviour of the entire battery pack!
- The effects described above should not be confused with the normal decrease of battery capacity over time. Battery also loses some capacity when it is repeatedly charged / discharged. This information is provided in the technical specification from battery manufacturer.

1.4 Standards applied

The EurotestXC instruments are manufactured and tested in accordance with the following regulations:

Electromagnetic	compatibility (EMC)
EN 61326-1	Electrical equipment for measurement, control and laboratory use – EMC requirements
	Class B (Hand-held equipment used in controlled EM environments)
Safety (LVD)	, , , , , , , , , , , , , , , , , , , ,
EN 61010-1	Safety requirements for electrical equipment for measurement, control and laboratory use – Part 1: General requirements
EN 61010-2-030	Safety requirements for electrical equipment for measurement, control and laboratory use – Part 2-030: Particular requirements for testing and measuring circuits
EN 61010-031	Safety requirements for electrical equipment for measurement, control and laboratory use – Part 031: Safety requirements for hand-held probe assemblies for electrical measurement and test
EN 61010-2-032	Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 2-032: Particular requirements for hand-held and hand-manipulated current sensors for electrical test and measurement
Functionality	
EN 61557	Electrical safety in low voltage distribution systems up to 1000 V _{AC} and 1500
	V _{AC} – Equipment for testing, measuring or monitoring of protective measures
	Part 1: General requirements
	Part 2: Insulation resistance
	Part 3: Loop resistance
	Part 4: Resistance of earth connection and equipotential bonding Part 5: Resistance to earth
	Part 6: Residual current devices (RCDs) in TT and TN systems
	Part 7: Phase sequence
	Part 10: Combined measuring equipment
	Part 12: Performance measuring and monitoring devices (PMD)
DIN 5032	Photometry
	Part 7: Classification of illuminance meters and luminance meters
	rds for electrical installations and components
EN 61008	Residual current operated circuit-breakers without integral overcurrent
EN 04000	protection for household and similar uses
EN 61009	Residual current operated circuit-breakers with integral overcurrent
IEC 60364-4-41	protection for household and similar uses
IEC 00304-4-41	Electrical installations of buildings Part 4-41 Protection for safety – protection against electric shock
BS 7671	IEE Wiring Regulations (17 th edition)
AS/NZS 3017	Electrical installations – Verification guidelines
	2.

2 Instrument set and accessories

2.1 Standard set MI 3152 EurotestXC

- Instrument MI 3152 EurotestXC
- Soft carrying bag
- Earth set 3-wire, 20 m
- Plug commander
- Test lead, 3 x 1.5 m
- Test probe, 3 pcs
- Crocodile clip, 3 pcs
- Set of carrying straps
- RS232-PS/2 cable
- USB cable
- Set of Ni-MH battery cells
- Power supply adapter
- CD with instruction manual, "Guide for testing and verification of low voltage installations" handbook and PC software Metrel ES Manager.
- Short instruction manual
- Calibration Certificate

2.2 Standard set MI 3152H EurotestXC 2,5 kV

- Instrument MI 3152H EurotestXC 2,5 kV
- Soft carrying bag
- Earth set 3-wire, 20 m
- Plug commander
- Test lead, 3 x 1.5 m
- 2.5 kV test lead, 2 x 1.5 m
- Test probe, 3 pcs
- Crocodile clip, 3 pcs
- Set of carrying straps
- RS232-PS/2 cable
- USB cable
- Set of Ni-MH battery cells
- Power supply adapter
- CD with instruction manual, "Guide for testing and verification of low voltage installations" handbook and PC software Metrel ES Manager.
- Short instruction manual
- Calibration Certificate

2.2.1 Optional accessories

See the attached sheet for a list of optional accessories that are available on request from your distributor.

3 Instrument description

3.1 Front panel

Figure 3.1: Front panel

1	4,3" COLOR TFT DISPLAY WITH TOUCH SCREEN
2	SAVE key
	Stores actual measurement result(s)
3	CURSOR keys
	Navigate in menus
	RUN key
4	Start / stop selected measurement.
4	Enter selected menu or option.
	View available values for selected parameter / limit.
5	OPTIONS key
	Show detailed view of options.
6	ESC key
	Back to previous menu.
	ON / OFF key
	Switch instrument on / off.
7	The instrument automatically switches off after 10 minutes of idle state
	(no key pressed or any touchscreen activity)
	Press and hold the key for 5 s to switch off the instrument.
8	GENERAL SETTINGS key
	Enter General settings menu.
9	BACKLIGHT key
	Toggle screen brightness between high and low intensity.
10	MEMORY ORGANIZER key
	Shortcut key to enter Memory organizer menu.
11	SINGLE TESTS key
	Shortcut key to enter Single Tests menu.
12	AUTO TESTS key
	Shortcut key to enter Auto Tests menu.

3.2 Connector panel

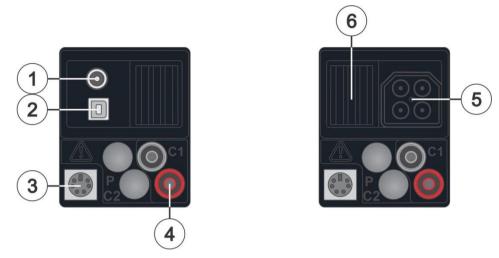


Figure 3.2: Connector panel

1	Charger socket
2	USB communication port Communication with PC USB (1.1) port
3	PS/2 communication port Communication with PC RS232 serial port Connection to optional measuring adapters Connection to barcode / RFID reader
4	C1 inputs Current clamp measuring input
5	Test connector
6	Protection cover

Warnings!

- Maximum allowed voltage between any test terminal and ground is 550 V!
- Maximum allowed voltage between test terminals on test connector is 550 V!
- Maximum allowed voltage on test terminal C1 is 3 V!
- Maximum short-term voltage of external power supply adapter is 14 V!

3.3 Back side

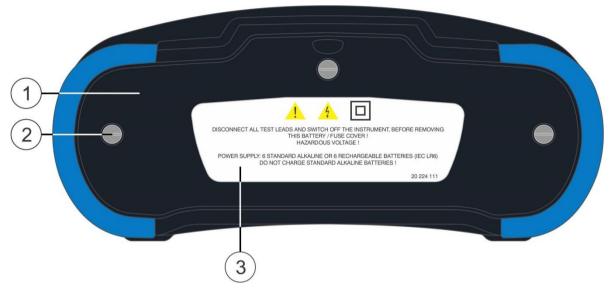


Figure 3.3: Back view

- 1 Battery / fuse compartment cover
- 2 Fixing screws for battery / fuse compartment cover
- 3 Back panel information label

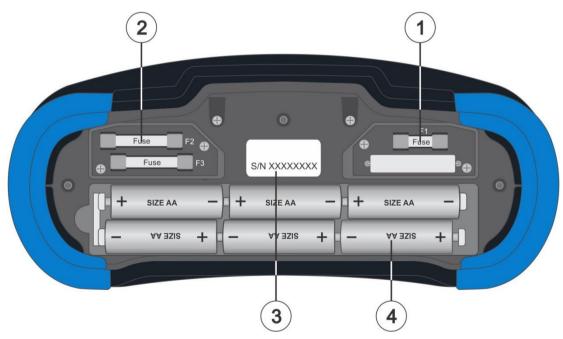


Figure 3.4: Battery and fuse compartment

1 Fuse F1
M 315 mA / 250 V

2 Fuses F2 and F3
F 4 A / 500 V (breaking capacity 50 kA)

3 Serial number label
Battery cells
Size AA, alkaline / rechargeable NiMH

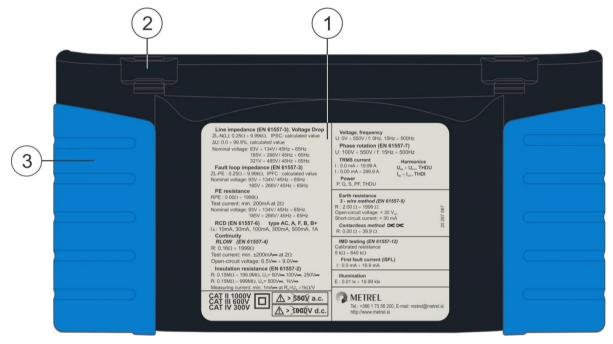


Figure 3.5: Bottom view

- 1 Bottom information label
- 2 Neck belt openings
- 3 Handling side covers

3.4 Carrying the instrument

With the neck-carrying belt supplied in standard set, various possibilities of carrying the instrument are available. Operator can choose appropriate one on basis of his operation, see the following examples:

The instrument hangs around operator's neck only – quick placing and displacing.

The instrument can be used even when placed in soft carrying bag – test cable connected to the instrument through the front aperture.

3.4.1 Secure attachment of the strap

You can choose between two methods:

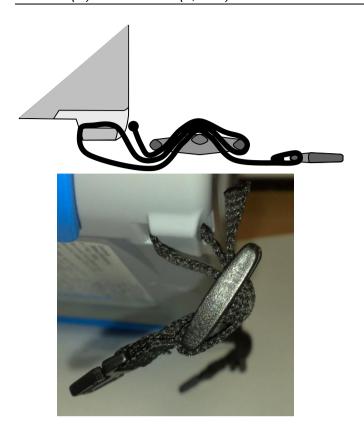


Figure 3.6: First method

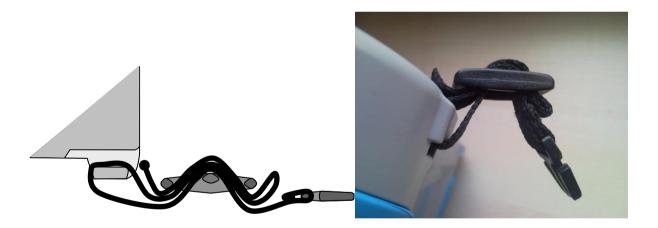


Figure 3.7: Alternative method

Please perform a periodical check of the attachment.

4 Instrument operation

The EurotestXC instrument can be manipulated via a keypad or touch screen.

4.1 General meaning of keys

Cursor keys are used to:

select appropriate option.

Run key is used to:

- confirm selected option;
- start and stop measurements;
- test PE potential.

Escape key is used to:

- return to previous menu without changes;
- abort measurements.

Option key is used to:

expand column in control panel.

Save key is used to:

store test results.

Single Tests key is used as:

shortcut key to enter Single Tests menu.

Auto Tests key is used as:

shortcut key to enter Auto Tests menu.

Memory Organizer key is used as:

shortcut key to enter Memory Organizer menu.

Backlight key is used to:

 toggle screen brightness between High and Low intensity.

General Settings key is used to:

enter General Settings menu.

On / Off key is used to:

- switch On / Off the instrument;
- switch Off the instrument if pressed and held for 5 s.

4.2 General meaning of touch gestures

Tap (briefly touch surface with fingertip) is used to:

- select appropriate option;
- confirm selected option;
- start and stop measurements.

Swipe (press, move, lift) up / down is used to:

- scroll content in same level;
- navigate between views in same level.

ana

Long press (touch surface with fingertip for at least 1 s) is used to:

- select additional keys (virtual keyboard);
- enter cross selector from single test screens.

Tap Escape icon is used to:

- return to previous menu without changes;
- abort measurements.

4.3 Virtual keyboard

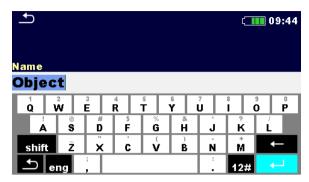
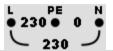


Figure 4.1: Virtual keyboard

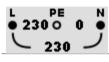
- Toggle case between lowercase and uppercase.

 Active only when alphabetic characters keyboard layout selected.

 Backspace
 Clears last character or all characters if selected.


 (If held for 2 s, all characters are selected).

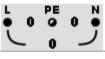
 Enter confirms new text.
- Activates numeric / symbols layout.
- Activates alphabetic characters.
- English keyboard layout.
- GR Greek keyboard layout.
- Seturns to the previous menu without changes.


4.4 Display and sound

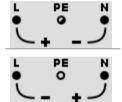
4.4.1 Terminal voltage monitor

The terminal voltage monitor displays on-line the voltages on the test terminals and information about active test terminals in the a.c. installation measuring mode.

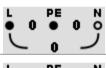
Online voltages are displayed together with test terminal indication. All three test terminals are used for selected measurement.


Online voltages are displayed together with test terminal indication.

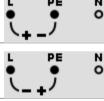
L and N test terminals are used for selected measurement.


L and PE are active test terminals.

N terminal should also be connected for correct input voltage condition.



L and N are active test terminals.


PE terminal should also be connected for correct input voltage condition.

Polarity of test voltage applied to the output terminals, L and N.

L and PE are active test terminals.

Polarity of test voltage applied to the output terminals, L and PE.

2.5 kV Insulation measurement terminal screen. (MI 3152H only)

4.4.2 Battery indication

The battery indication indicates the charge condition of battery and connection of external charger.

Battery capacity indication.

Battery is in good condition.

Battery is full.

Low battery.

Battery is too weak to guarantee correct result. Replace or recharge the battery cells.

Empty battery or no battery.

Charging in progress (if power supply adapter is connected).

4.4.3 Measurement actions and messages

Conditions on the input terminals allow starting the measurement. Consider other displayed warnings and messages.

Conditions on the input terminals do not allow starting the measurement. Consider displayed warnings and messages.

Proceeds to next step of the measurement.

Stop the measurement.

Result(s) can be stored.

Starts test leads compensation in Rlow / continuity measurement. Starts Zref line impedance measurement at origin of electrical installation in Voltage Drop measurement. Zref value is set to 0.00 Ω if pressing this touch key while instrument is not connected to a voltage source.

Use A 1199 Specific earth resistance adapter for this test.

Use A 1143 Euro Z 290 A adapter for this test.

Use A 1172 or A 1173 Illumination sensor for this test.

2 Count down timer (in seconds) within measurement.

Measurement is running, consider displayed warnings.

RCD tripped-out during the measurement (in RCD functions).

Instrument is overheated. The measurement is prohibited until the temperature decreases under the allowed limit.

High electrical noise was detected during measurement. Results may be impaired.

Indication of noise voltage above 5 V between H and E terminals during earth resistance measurement.

L and N are changed.

In most instrument profiles L and N test terminals are reversed automatically according to detected voltages on input terminal. In instrument profiles for countries where the position of phase and neutral connector is defined the selected feature is not working.

Warning! High voltage is applied to the test terminals.

The instrument automatically discharge tested object after finished insulation measurement.

When an insulation resistance measurement has been performed on a capacitive object, automatic discharge may not be done immediately! The warning symbol and the actual voltage are displayed during discharge until voltage drops below 30 V.

Warning! Dangerous voltage on the PE terminal! Stop the activity immediately and eliminate the fault / connection problem before proceeding with any activity!

Continuous sound warning is also present.

Test leads resistance in R low / Continuity measurement is not compensated.

Test leads resistance in R low / Continuity measurement is compensated.

High resistance to earth of current test probes. Results may be impaired.

High resistance to earth of potential test probes. Results may be impaired.

High resistance to earth of potential and current test probes. Results may be impaired.

Too small current for declared accuracy. Results may be impaired. Check in Current Clamp Settings if sensitivity of current clamp can be increased.

In Earth 2 Clamp measurement results are very accurate for resistances below 10 Ω . At higher values (several 10 Ω) the test current drops to few mA. The measuring accuracy for small currents and immunity against noise currents must be considered!

Measured signal is out of range (clipped). Results are impaired.

Single fault condition in IT system. (MI 3152 only)

Fuse F1 is broken.

4.4.4 Result indication

Measurement result is inside pre-set limits (PASS).

Measurement result is out of pre-set limits (FAIL).

Measurement is aborted. Consider displayed warnings and messages.

RCD t and RCD I measurements will only be performed if the contact voltage in the pre-test at nominal differential current is lower than the set contact voltage limit!

4.5 Instruments main menu

From the Main menu different main operation menus can be selected.

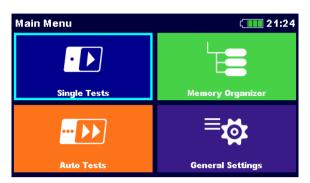
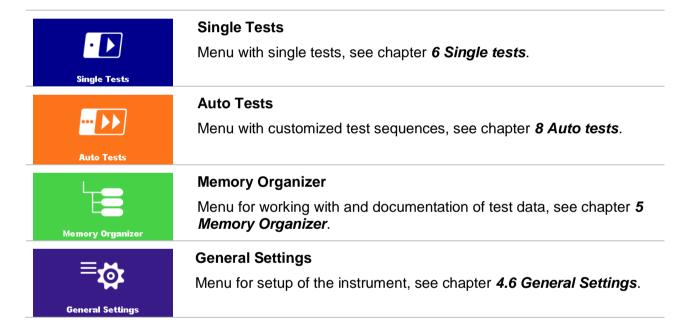
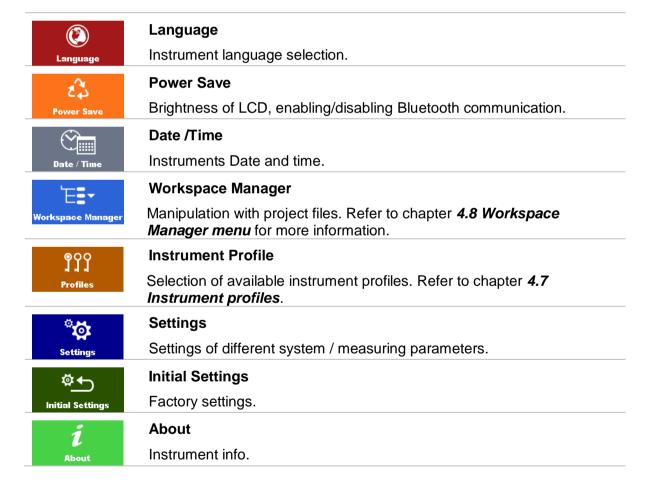



Figure 4.2: Main menu

Options


4.6 General Settings

In the **General settings menu** general parameters and settings of the instrument can be viewed or set.

Figure 4.3: General settings menu

Options

4.6.1 Language

In this menu the language of the instrument can be set.

Figure 4.4: Language menu

4.6.2 Power Save

In this menu different options for decreasing power consumption can be set.

Figure 4.5: Power save menu

Brightness	Setting level of LCD brightness level. Power saving at low level: ca 15%			
LCD off time	Setting LCD off after set time interval. LCD is switched on after pressing			
	any key or touching the LCD.			
	Power saving at LCD off (at low level brightness): ca 20%			
Bluetooth	Always On: Bluetooth module is ready to communicate.			
	Save mode: Bluetooth module is set to sleep mode and is not functioning			
	Power saving in Save mode: 7 %			

4.6.3 Date and time

In this menu date and time of the instrument can be set.

Figure 4.6: Setting date and time

Note:

If the batteries are removed the set date and time will be lost.

4.6.4 Settings

In this menu different general parameters can be set.

Figure 4.7: Settings menu

	Available selection	Description
Touch screen	[ON, OFF]	Enables / disables operation with touch screen.
RCD Standard	[EN 61008 / EN 61009, IEC 60364-4-41 TN/IT, IEC 60364-4-41 TT, BS 7671, AS/NZS 3017]	Used standard for RCD tests. Refer to the end of this chapter for more information. Maximum RCD disconnection times differ in various standards. The trip-out times defined in individual standards are listed below.
Isc factor	[0.20 3.00] Default value: 1.00	Short circuit current Isc in the supply system is important for selection or verification of protective circuit breakers (fuses, over-current breaking devices, RCDs). The value should be set according to local regulative.
Length Unit	[m, ft]	Length unit for specific earth resistance measurement.
Ch1 clamp type	[A 1018, A 1019, A1391]	Model of current clamp adaptor.
Range	A 1018:[20 A] A1019: [20 A] A 1391: [40 A, 300 A]	Measuring range of selected current clamp adaptor. Measuring range of the instrument must be considered. Measurement range of current clamp adaptor can be higher than of the instrument.
Merge fuses	[yes, no]	[Yes]: fuse type and parameters set in one function are also kept for other functions! [No]: Fuse parameters will be considered only in function where they have been set.
Commander	[enabled, disabled]	The disabled option is intended to disable the commander's remote keys. In case of high EM interfering noise the operation of the commander can be irregular.
Earthing system	[TN/TT, IT (MI 3152 only)]	Terminal voltage monitor and measuring functions are suited to selected earthing

system.

4.6.4.1 RCD standard

Maximum RCD disconnection times differ in various standards. The trip-out times defined in individual standards are listed below.

	½×I _{∆N} 1)	$I_{\Delta N}$	2×I _{∆N}	5×I _{∆N}
General RCDs (non-delayed)	$t_{\Delta} > 300 \text{ ms}$	t_{Δ} < 300 ms	t_{Δ} < 150 ms	t_{Δ} < 40 ms
Selective RCDs (time-delayed)	t_{Δ} > 500 ms	130 ms < t_{Δ} < 500 ms	$60 \text{ ms} < t_{\Delta} < 200 \text{ ms}$	$50 \text{ ms} < t_{\Delta} < 150 \text{ ms}$

Table 4.1: Trip-out times according to EN 61008 / EN 61009

Test according to standard IEC/HD 60364-4-41 has two selectable options:

- IEC 60364-4-41 TN/IT and
- IEC 60364-4-41 TT

The options differ to maximum disconnection times as defined in IEC/HD 60364-4-41 Table 41.1.

	$U_0^{3)}$	½×I _{∆N} 1)	$I_{\Delta N}$	2×I _{∆N}	5×I _{∆N}
TN/IT	≤ 120 V	$t_{\Delta} > 800 \text{ ms}$	$t_{\Delta} \leq 800 \text{ ms}$	t_{Δ} < 150 ms t_{Δ} < 40	
1111/11	\leq 230 V	$t_{\Delta} > 400 \text{ ms}$	$t_{\Delta} \leq 400 \text{ ms}$		t = 10 mg
TT	≤ 120 V	$t_{\Delta} > 300 \text{ ms}$	$t_{\scriptscriptstyle \Delta} \! \leq \! 300 \; \text{ms}$		ι _Δ < 40 ms
• • •	≤ 230 V	$t_{\Delta} > 200 \text{ ms}$	$t_{\Delta} \leq 200 \text{ ms}$		

Table 4.2: Trip-out times according to IEC/HD 60364-4-41

	½×I _{∆N} 1)	$I_{\Delta N}$	2×I _{∆N}	5×I _{∆N}	
General RCDs (non-delayed)	t _∆ > 1999 ms	t_{Δ} < 300 ms	t_{Δ} < 150 ms	t _∆ < 40 ms	
Selective RCDs (time-delayed)	t _∆ > 1999 ms	130 ms < t_{Δ} < 500 ms	$60 \text{ ms} < t_{\Delta} < 200 \text{ ms}$	$50 \text{ ms} < t_{\Delta} < 150 \text{ ms}$	

Table 4.3: Trip-out times according to BS 7671

RCD type	I _{ΔN} (mA)	$t_{\Delta N}^{1/2} \times I_{\Delta N}^{(1)}$	$egin{align} \mathbf{I_{\Delta N}} \\ \mathbf{t_{\Delta}} \\ \end{bmatrix}$	$2 \times \mathbf{I}_{\Delta N}$ \mathbf{t}_{Δ}	5×I _{∆N} t _∆	Note	
I	≤ 10		40 ms	40 ms	40 ms		
II	> 10 ≤ 30	> 999 ms	300 ms	150 ms	40 ms	Maximum break time	
Ш	> 30		300 ms	150 ms	40 ms	Maximum break time	
IV S	> 30	> 999 ms	500 ms	200 ms	150 ms		
14 🖸	> 30 > 999 IIIS	2 999 IIIS	130 ms	60 ms	50 ms	Minimum non-actuating time	

Table 4.4: Trip-out times according to AS/NZS 3017²⁾

Standard	½×I _{∆N}	$I_{\Delta N}$	2×I _{∆N}	5×I _{∆N}
EN 61008 / EN 61009	300 ms	300 ms	150 ms	40 ms
IEC 60364-4-41	1000 ms	1000 ms	150 ms	40 ms
BS 7671	2000 ms	300 ms	150 ms	40 ms
AS/NZS 3017 (I, II, III)	1000 ms	1000 ms	150 ms	40 ms

Table 4.5: Maximum test times related to selected test current for general (non-delayed) RCD

Standard	½×I _{∆N}	l _{ΔN}	2×I _{∆N}	5×I _{∆N}
EN 61008 / EN 61009	500 ms	500 ms	200 ms	150 ms
IEC 60364-4-41	1000 ms	1000 ms	150 ms	40 ms
BS 7671	2000 ms	500 ms	200 ms	150 ms
AS/NZS 3017 (IV)	1000 ms	1000 ms	200 ms	150 ms

Table 4.6: Maximum test times related to selected test current for selective (time-delayed) RCD

Note:

 Trip-out limit times for PRCD, PRCD-K and PRCD-S are equal to General (non-delayed) RCDs.

4.6.5 Initial Settings

In this menu the instrument settings, measurement parameters and limits can be set to initial (factory) values.

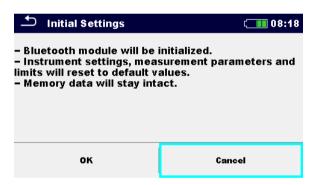


Figure 4.8: Initial settings menu

Warning:

Following customized settings will be lost when setting the instruments to initial settings:

- Measurement limits and parameters,
- Parameters and settings in General settings menu.
- If the batteries are removed the custom made settings will be lost.

Note:

Following customized settings will stay:

- Profile settings,
- Data in memory.

¹⁾ Minimum test period for current of $1/2 \times I_{\Delta N}$, RCD shall not trip-out.

²⁾ Test current and measurement accuracy correspond to AS/NZS 3017 requirements.

³⁾ U_0 is nominal U_{LPE} voltage.

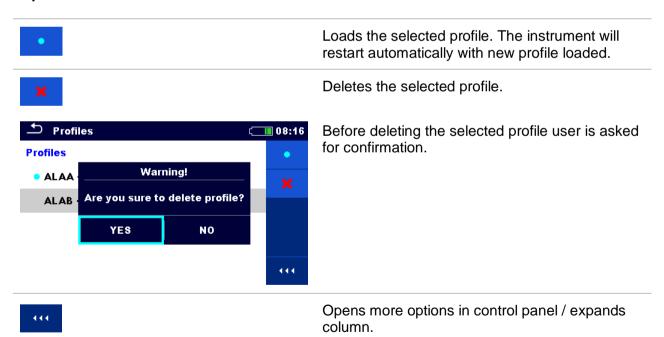
4.6.6 About

In this menu instrument data (name, serial number, version, fuse version and date of calibration) can be viewed.

Figure 4.9: Instrument info screen

4.7 Instrument profiles

In this menu the instrument profile can be selected from the available ones.


Figure 4.10: Instrument profiles menu

The instrument uses different specific system and measuring settings in regard to the scope of work or country it is used. These specific settings are stored in instrument profiles.

By default each instrument has at least one profile activated. Proper licence keys must be obtained to add more profiles to the instruments.

If different profiles are available they can be selected in this menu.

Options

4.8 Workspace Manager menu

The Workspace Manager is intended to manage with different Workspaces and Exports that are stored into internal data memory.

4.8.1 Workspaces and Exports

The works with MI 3152(H) EurotestXC can be organized and structured with help of Workspaces and Exports. Exports and Workspaces contain all relevant data (measurements, parameters, limits, structure objects) of an individual work.

Workspaces are stored on internal data memory on directory WORKSPACES, while Exports are stored on directory EXPORTS. Export files can be read by Metrel applications that run on other devices. Exports are suitable for making backups of important works. To work on the instrument an Export should be imported first from the list of Exports and converted to a Workspace. To be stored as Export data a Workspace should be exported first from the list of Workspaces and converted to an Export.

4.8.2 Workspace Manager main menu

In Workspace manager Workspaces and Exports are displayed in two separated lists.

Figure 4.11: Workspace manager menu

Options

WORKSPACES:	List of Workspaces.
	Displays a list of Exports.
+	Adds a new Workspace.
	Refer to chapter 4.8.5 Adding a new Workspace for more information.
EXPORTS:	List of Exports.
	Displays a list of Workspaces.
111	Opens more options in control panel / expands column.

4.8.3 Operations with Workspaces

Only one Workspace can be opened in the instrument at the same time. The Workspace selected in the Workspace Manager will be opened in the Memory Organizer.

Figure 4.12: Workspaces menu

Options

- Marks the opened Workspace in Memory Organizer.
 - Opens the selected Workspace in Memory Organizer.

Refer to chapter **4.8.6 Opening a Workspace** for more information.

Deletes the selected Workspace.

Refer to chapter **4.8.7 Deleting a Workspace / Export** for more information.

Adds a new Workspace.

Refer to chapter **4.8.5** Adding a new Workspace for more information.

Exports a Workspace to an Export.

Refer to **4.8.9 Exporting a Workspace** for more information.

Opens more options in control panel / expands column.

4.8.4 Operations with Exports

Figure 4.13: Workspace manager Exports menu

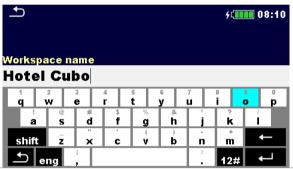
Options

Deletes the selected Export.

Refer to chapter 4.8.7 Deleting a Workspace / Export for more information.

Imports a new Workspace from Export.

Refer to 4.8.8 Importing a Workspace for more information.


Opens more options in control panel / expands column.

4.8.5 Adding a new Workspace

Procedure

New Workspaces can be added from the Workspace Manager screen.

Enters option for adding a new Workspace.

Keypad for entering name of a new Workspace is displayed after selecting New.

After confirmation a new Workspace is added in the list in Main Workspace Manager menu.

4.8.6 Opening a Workspace

Procedure

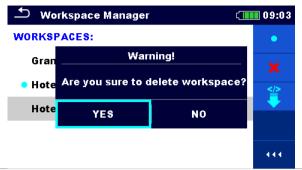
Workspace can be selected from a list in Workspace manager screen.

Opens a Workspace in Workspace manager.

The opened Workspace is marked with a blue dot. The previously opened Workspace will close automatically.

4.8.7 Deleting a Workspace / Export

Procedure



Workspace / Export to be deleted should be selected from the list of Workspaces / Exports.

Opened workspace can't be deleted.

2

Enters option for deleting a Workspace / Export.

Before deleting the selected Workspace / Export the user is asked for confirmation.

Workspace / Export is removed from the Workspace / Export list.

4.8.8 Importing a Workspace

Select an Export file to be imported from Workspace manager Export list.

2

Enters option Import.

Before the import of the selected Export file the user is asked for confirmation.

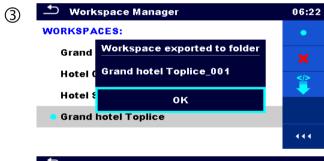
The imported Export file is added to the list of Workspaces.

Note:

If a Workspace with the same name already exists the name of the imported Workspace will be changed (name_001, name_002, name_003, ...).

444

4.8.9 Exporting a Workspace


Select a Workspace from Workspace manager list to be exported to an Export file

2 **

Enters option Export.

Before exporting the selected Workspace the user is asked for confirmation.

Workspace is exported to Export file and is added to the list of Exports.

Note:

If an Export file with the same name already exists the name of the Export file will be changed (name_001, name_002, name_003, ...).

5 Memory Organizer

Memory Organizer is a tool for storing and working with test data.

5.1 Memory Organizer menu

The data is organized in a tree structure with Structure objects and Measurements. EurotestXC instrument has a multi-level structure. The hierarchy of Structure objects in the tree is shown on *Figure 5.1*.

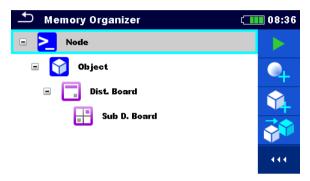


Figure 5.1: Default tree structure and its hierarchy

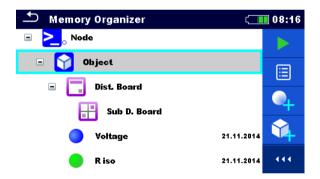
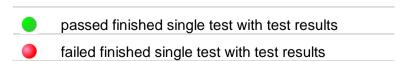


Figure 5.2: Example of a tree menu


5.1.1 Measurement statuses

Each measurement has:

- a status (Pass or Fail or no status),
- a name,
- results,
- limits and parameters.

A measurement can be a Single test or an Auto test. For more information refer to chapters **7 Tests and measurements** and **8 Auto tests**.

Statuses of Single tests

finished single test with test results and no statusempty single test without test results

Overall statuses of Auto tests

- at least one single test in the Auto test passed and no single test failed
- at least one single test in the Auto test failed
- at least one single test in the Auto test was carried out and there were no other passed or failed single tests.
- empty Auto test with empty single tests

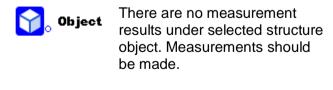
5.1.2 Structure Objects

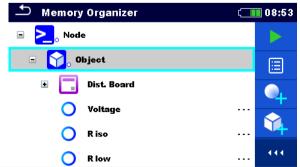
Each Structure object has:

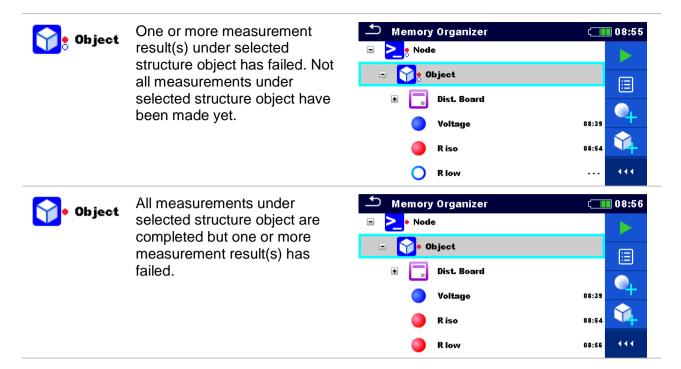
- an icon
- a name and
- parameters.

Optionally they can have:

- an indication of the status of the measurements under the Structure object and
- a comment or a file attached.




Figure 5.3: Structure object in tree menu


5.1.2.1 Measurement status indication under the Structure object

Overall status of measurements under each structure element /sub-element can be seen without spreading tree menu. This feature is useful for quick evaluation of test status and as guidance for measurements.

Options

Note:

There is no status indication if all measurement results under each structure element /sub-element have passed or if there is an empty structure element / sub-element (without measurements).

5.1.3 Operations in Tree menu

In the Memory organizer different actions can be taken with help of the control panel at the right side of the display. Possible actions depend on the selected element in the organizer.

5.1.3.1 Operations on measurements (finished or empty measurements)

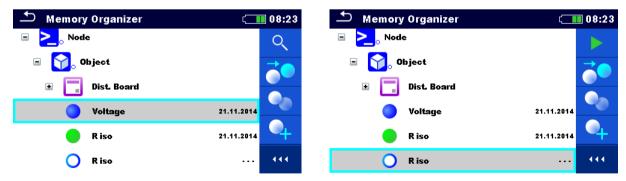


Figure 5.4: A measurement is selected in the Tree menu

Options

Q

Views results of measurement.

The instrument goes to the measurement memory screen. Refer to chapter 6.1.8

Recall single test results screen.

Starts a new measurement.

The instrument goes to the measurement start screen. Refer to chapter *6.1.3 Single test start screen* for more information.

Clones the measurement.

The selected measurement can be copied as an empty measurement under the same Structure object. Refer to chapter *5.1.3.7 Clone a measurement* for more information.

Copies & Paste a measurement.

The selected measurement can be copied and pasted as an empty measurement to any location in structure tree. Multiple "Paste" is allowed. Refer to chapter *5.1.3.10 Copy & Paste a measurement* for more information.

Adds a new measurement.

The instrument goes to the Menu for adding measurements. Refer to chapter *5.1.3.5 Add a new measurement* for more information.

Deletes a measurement.

Selected Measurement can be deleted. User is asked for confirmation before the deleting. Refer to chapter *5.1.3.12 Delete a measurement* for more information.

5.1.3.2 Operations on Structure objects

The structure object must be selected first.

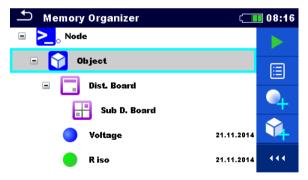


Figure 5.5: A structure object is selected in the Tree menu

Options

Starts a new measurement.

Type of measurement (Single test or Auto test) should be selected first. After proper type is selected, the instrument goes to Single Test or Auto Test selection screen. Refer to chapters *6.1 Selection modes*.

Saves a measurement.

Saving of measurement under the selected Structure object.

View / edit parameters and attachments.

Parameters and attachments of the Structure object can be viewed or edited.

Refer to chapter 5.1.3.3 View / Edit parameters and attachments of a Structure object for more information.

Adds a new measurement.

The instrument goes to the Menu for adding measurement into structure. Refer to chapter *5.1.3.5 Add a new measurement* for more information.

Adds a new Structure object.

A new Structure object can be added. Refer to chapter *5.1.3.4 Add a new Structure Object* for more information.

Attachments.

Name and link of attachment is displayed.

Clones a Structure object.

Selected Structure object can be copied to same level in structure tree (clone). Refer to chapter *5.1.3.6 Clone a Structure object* for more information.

Copies & Paste a Structure object.

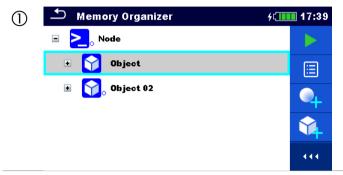
Selected Structure object can be copied and pasted to any allowed location in structure tree. Multiple "Paste" is allowed. Refer to chapter 5.1.3.8 Copy & Paste a Structure object for more information.

Deletes a Structure object.

Selected Structure object and sub-elements can be deleted. User is asked for confirmation before the deleting. Refer to chapter *5.1.3.11 Delete a Structure object* for more information.

Renames a Structure object.

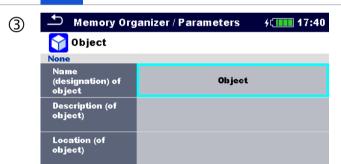
Selected Structure object can be renamed via keypad. Refer to chapter *5.1.3.13 Rename a Structure object* for more information.

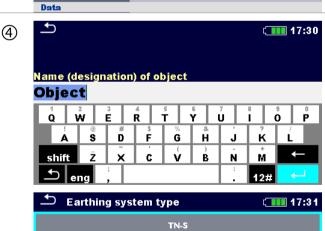


Expands column in control panel.

5.1.3.3 View / Edit parameters and attachments of a Structure object

The parameters and their content are displayed in this menu. To edit the selected parameter, tap on it or press the key to enter menu for editing parameters.


Procedure


Select structure object to be edited.

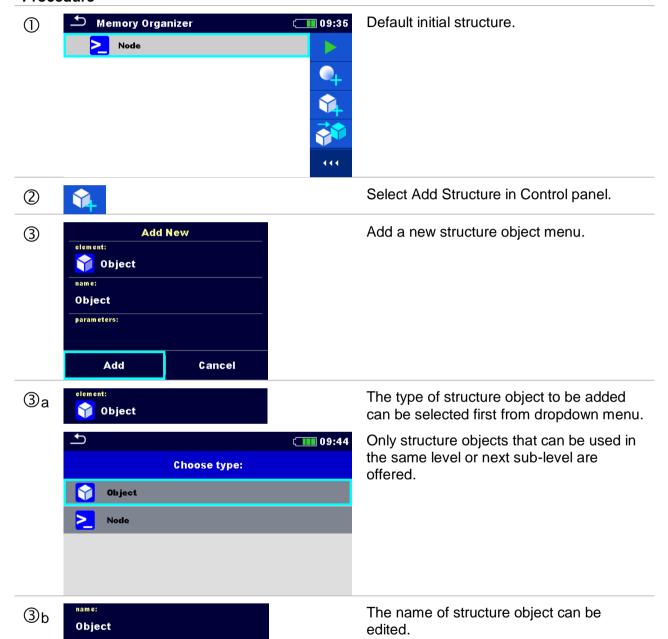
Select Parameters in Control panel.

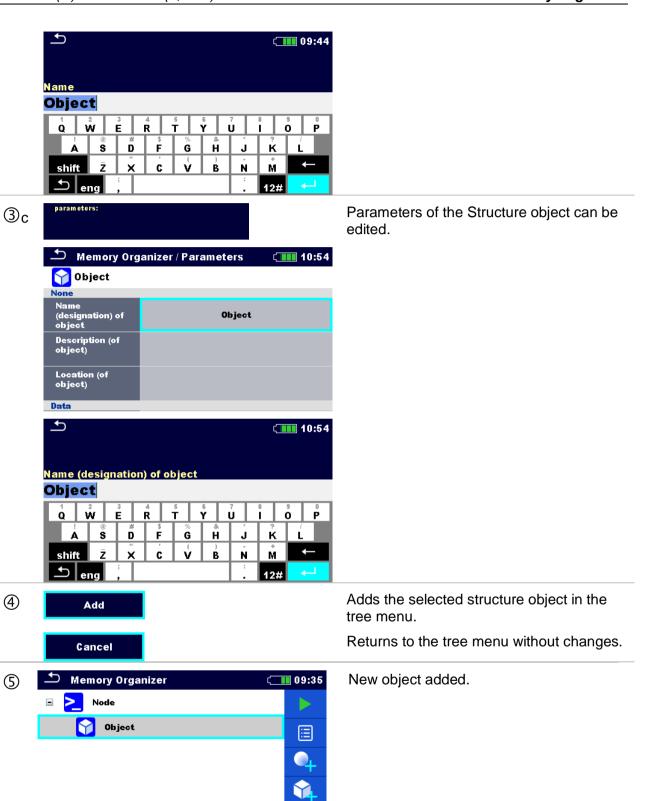
Example of Parameters menu.

TN-C-S

TN-C

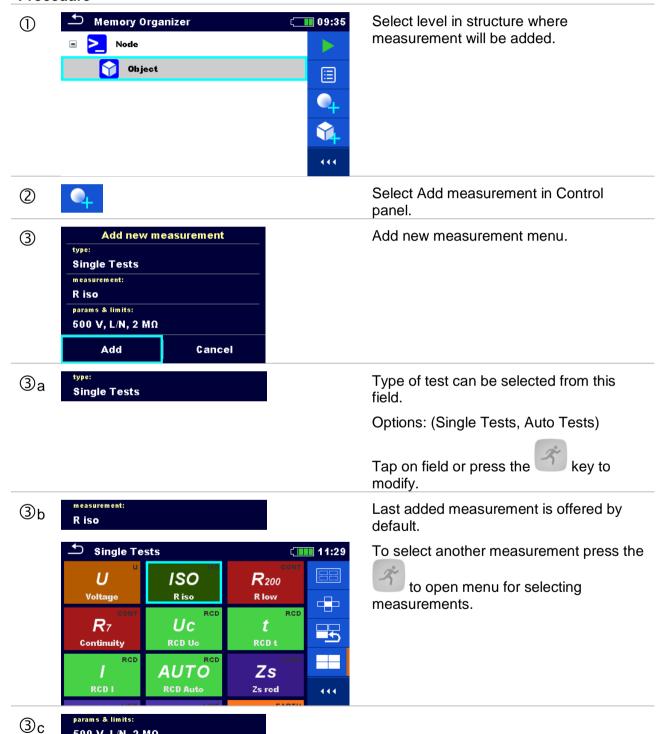
In menu for editing parameters the parameter's value can be selected from a dropdown list or entered via keypad. Refer to chapter *4 Instrument operation* for more information about keypad operation.




Select Attachments in Control panel.

5.1.3.4 Add a new Structure Object

This menu is intended to add new structure objects in the tree menu. A new structure object can be selected and then added in the tree menu.

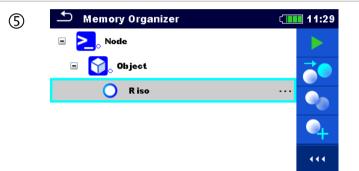


5.1.3.5 Add a new measurement

500 V, L/N, 2 MΩ

In this menu new empty measurements can be set and then added in the structure tree. The type of measurement, measurement function and its parameters are first selected and then added under the selected Structure object.

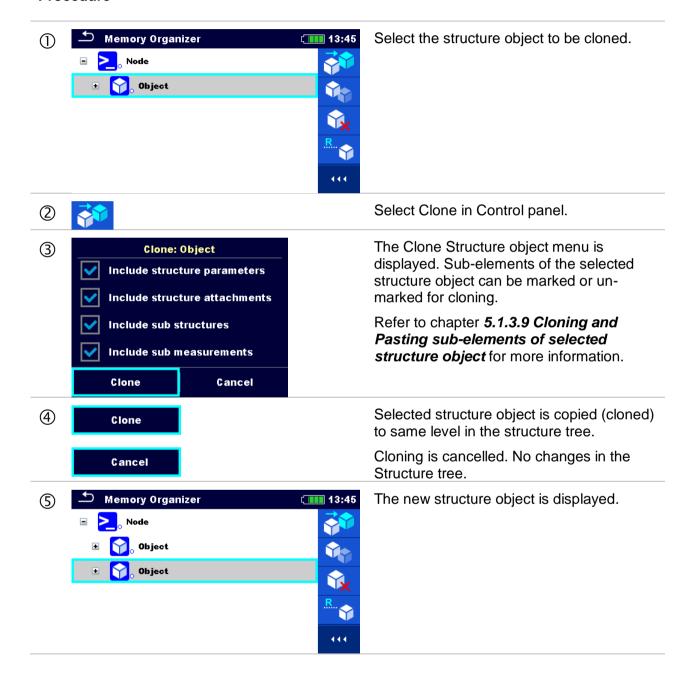
Select parameter and modify it as described earlier.


Refer to chapter 6.1.2 Setting parameters and limits of single tests for more information.

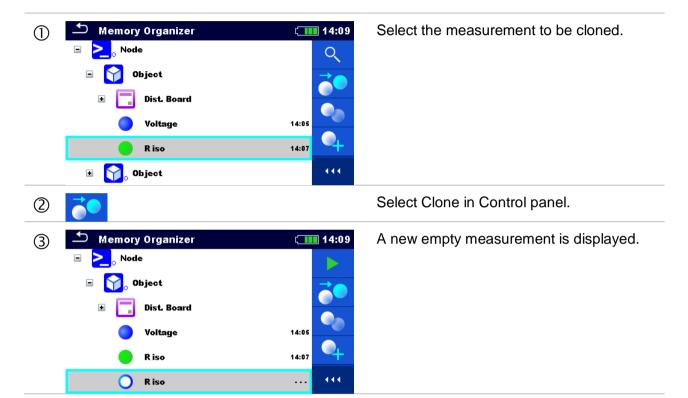
4

Adds the measurement under the selected Structure object in the tree menu.

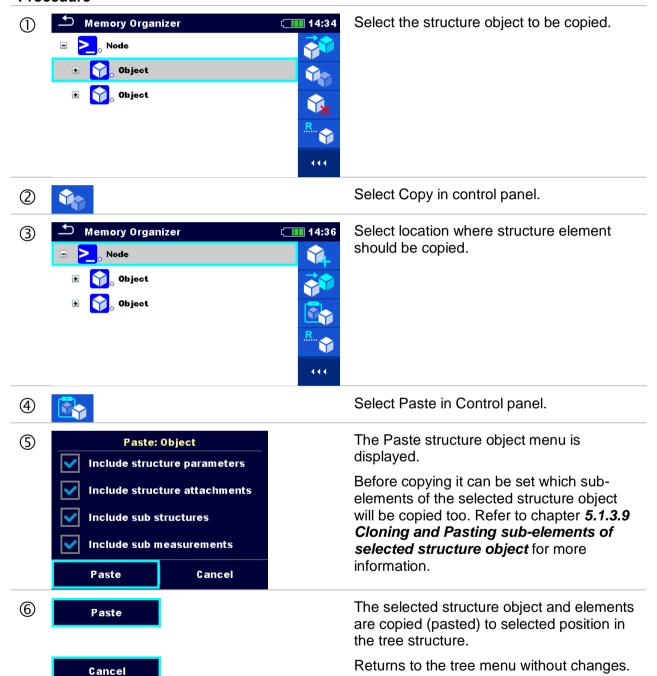
Cancel


Returns to the structure tree menu without changes.

New empty measurement is added under the selected Structure object.


5.1.3.6 Clone a Structure object

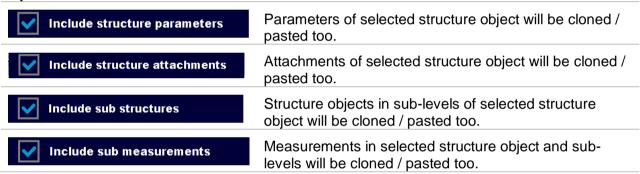
In this menu selected structure object can be copied (cloned) to same level in the structure tree. Cloned structure object have same name as original.


5.1.3.7 Clone a measurement

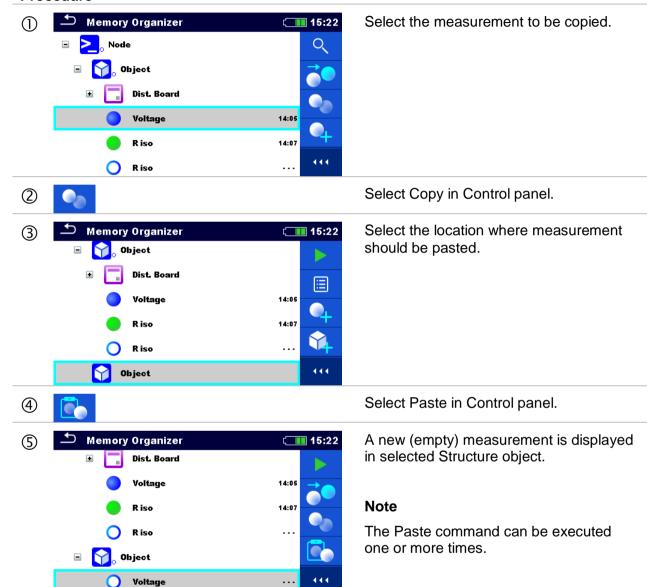
By using this function a selected empty or finished measurement can be copied (cloned) as an empty measurement to the same level in the structure tree.

5.1.3.8 Copy & Paste a Structure object

In this menu selected Structure object can be copied and pasted to any allowed location in the structure tree.

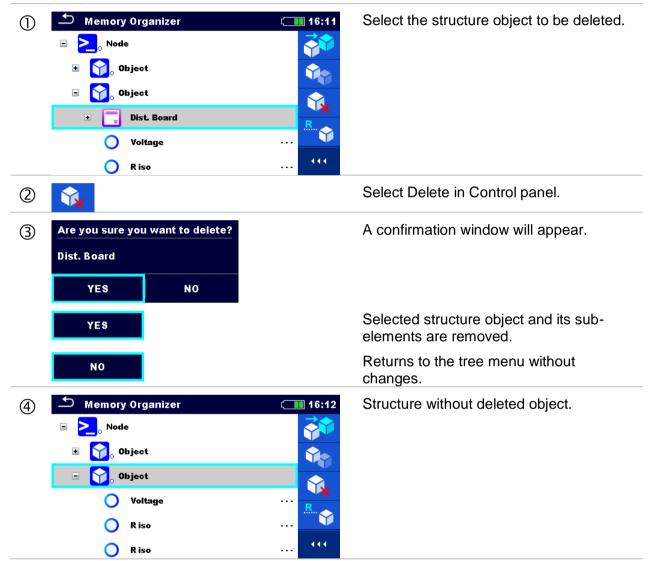


5.1.3.9 Cloning and Pasting sub-elements of selected structure object

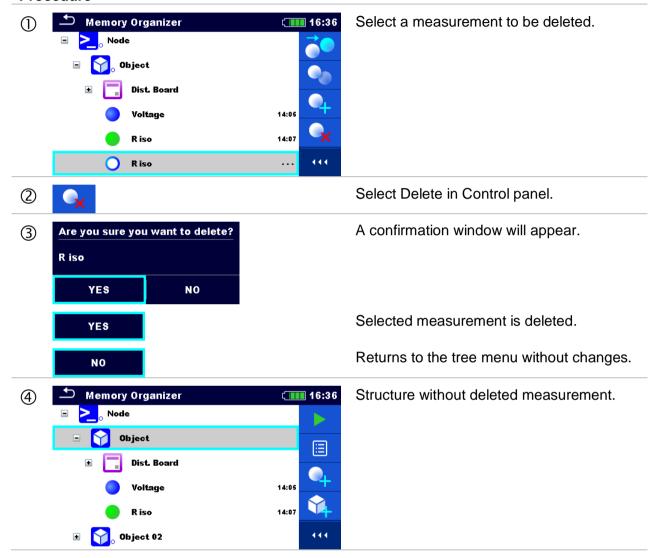

When structure object is selected to be cloned, or copied & pasted, additional selection of its sub-elements is needed. The following options are available:

Options

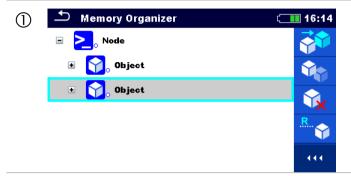
5.1.3.10 Copy & Paste a measurement


In this menu selected measurement can be copied to any allowed location in the structure tree.

5.1.3.11 Delete a Structure object


In this menu selected Structure object can be deleted.

5.1.3.12 Delete a measurement

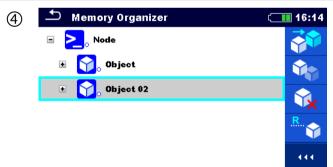

In this menu selected measurement can be deleted.

5.1.3.13 Rename a Structure object

In this menu selected Structure object can be renamed.

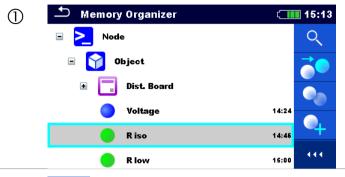
Procedure

Select the structure object to be renamed.



Select Rename in Control panel.

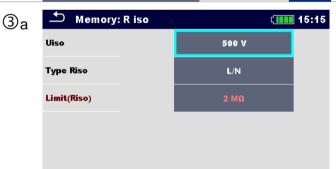
Virtual keypad will appear on screen. Enter new text and confirm.


Refer to chapter **4.3 Virtual keyboard** for keypad operation.

Structure object with the modified name.

5.1.3.14 Recall and Retest selected measurement

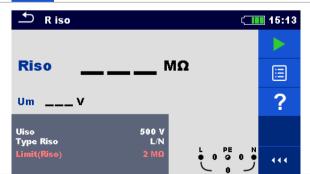
Procedure


Select the measurement to be recalled.

2 Q

Select Recall results in Control panel.

Measurement is recalled.



Parameters and limits can be viewed but cannot be edited.

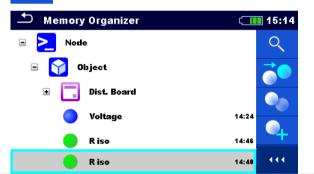
4

(5)

Select Retest in Control panel.

Measurement retest starting screen is displayed.

Parameters and limits can be viewed and edited.



Select Run in Control panel to retest the measurement.

Results / sub-results after re-run of recalled measurement.

8

Select Save results in Control panel.

Retested measurement is saved under same structure object as original one.

Refreshed memory structure with the new performed measurement.

Single tests

Single tests can be selected in the main Single tests menu or in Memory organizer main menu and sub-menus.

6.1 Selection modes

In **Single tests main menu** four modes for selecting single tests are available.

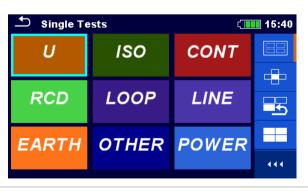
Options

Zs red

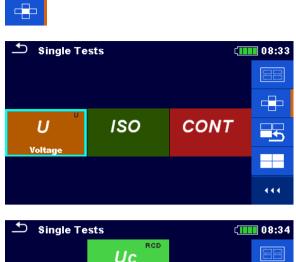
ΑII

A single test can be selected from a list of all single tests.

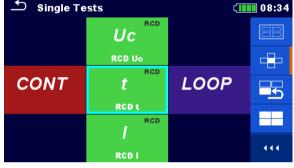
The single tests are always displayed in the same (default) order.


RCD I

Last 9 made different single tests are displayed.



Groups


The single tests are divided into groups of similar tests.

Cross selector

This selection mode is the fastest for working with the keypad.

Groups of single tests are organized in a row.

For the selected group all single tests are displayed and easy accessible with up /down keys.

444

Expands control panel / open more options.

6.1.1 Single test screens

In the Single test screens measuring results, sub-results, limits and parameters of the measurement are displayed. In addition on-line statuses, warnings and other info are displayed.

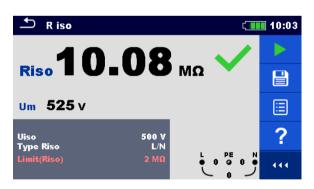
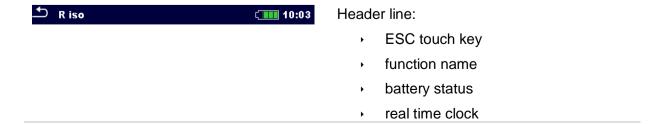
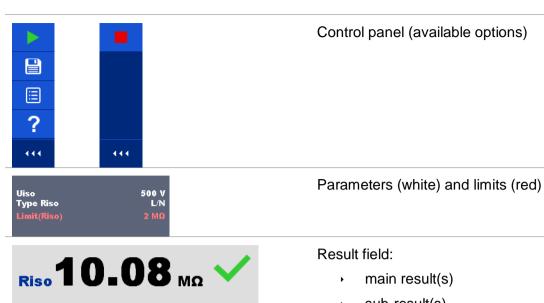
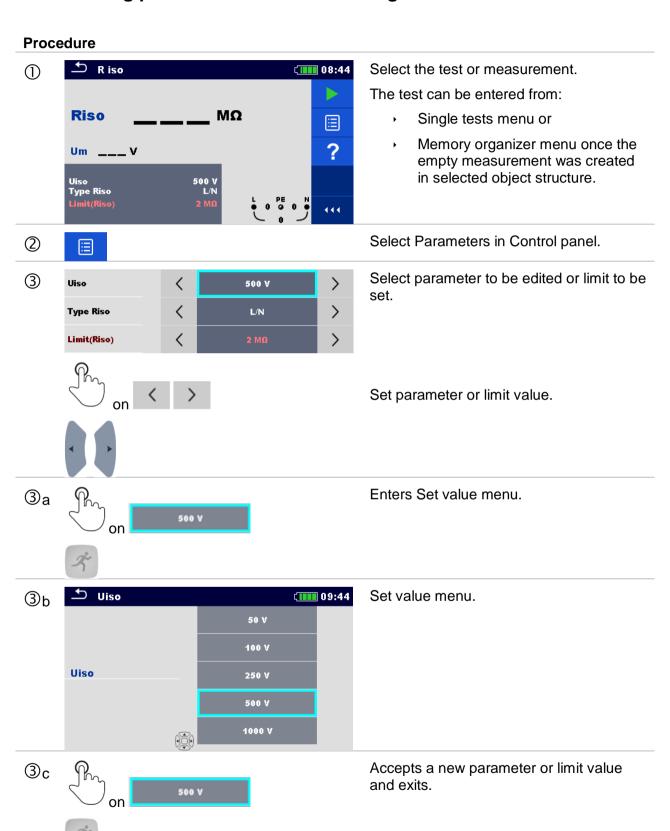




Figure 6.1: Single test screen organization, example of insulation resistance measurement

Single test screen organization


Um 525 v

- sub-result(s)
- PASS / FAIL indication

Voltage monitor with info and warning symbols

6.1.2 Setting parameters and limits of single tests

Accepts the new parameters and limit values and exits.

6.1.3 Single test start screen

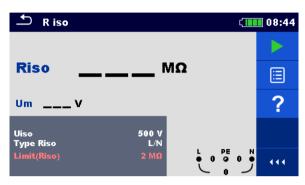


Figure 6.2: Single test start screen, example of insulation resistance measurement

Options (before test, screen was opened in Memory organizer or Single test main menu):

Starts the measurement.

Starts the continuous measurement (if applicable on selected single test).

Opens help screens.

Opens menu for changing parameters and limits.

Refer to chapter 6.1.2 Setting parameters and limits of single tests for more information.

Enters cross selector to select test or measurement.

Expands column in control panel.

6.1.4 Single test screen during test

Figure 6.3: Single test is running, example of insulation resistance continuous measurement

Operations when test is running:

Stops the single test measurement.

Proceeds to next step of the measurement (if measurement consists of more steps).

Previous value.

Next value.

Stops or aborts the measurement and returns one menu back.

6.1.5 Single test result screen

Figure 6.4: Single test results screen, example of insulation resistance measurement results

Options (after measurement is finished) Starts a new measurement. Starts a new continuous measurement (if applicable on selected single test). Iong Saves the result.

A new measurement was selected and started from a Structure object in the structure tree:

the measurement will be saved under the selected Structure object.

A new measurement was started from the Single test main menu:

- saving under the last selected Structure object will be offered by default. The user can select another Structure object or create a new Structure object.
- By pressing the key in Memory organizer menu the measurement is saved under selected location.

An empty measurement was selected in structure tree and started:

the result(s) will be added to the measurement. The measurement will change its status from 'empty' to 'finished'.

An already carried out measurement was selected in structure tree, viewed and then restarted:

	 a new measurement will be saved under the selected Structure object.
?	Opens help screens.
	Opens screen for changing parameters and limits.
	Refer to chapter 6.1.2 Setting parameters and limits of single tests for more information.
Uiso 500 V Type Riso L/N Limit(Riso) 2 ΜΩ	
Riso 10.08 MΩ V long on 525 v	Enters cross selector to select test or measurement.
***	Expands column in control panel.

6.1.6 Editing graphs (Harmonics)

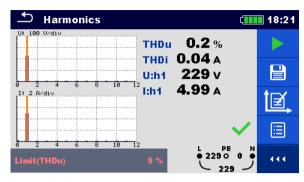
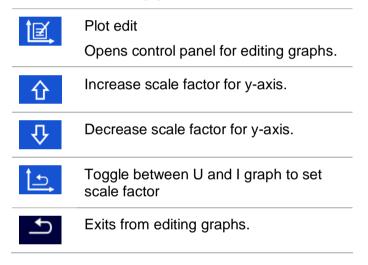



Figure 6.5: Example of Harmonics measurement results

Options for editing graphs (start screen or after measurement is finished)

6.1.7 Help screens

Help screens contain diagrams for proper connection of the instrument.

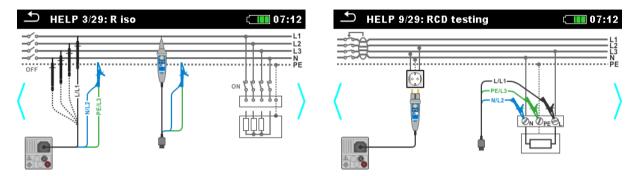
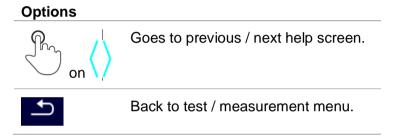



Figure 6.6: Examples of help screens

6.1.8 Recall single test results screen

Figure 6.7: Recalled results of selected measurement, example of insulation resistance recalled results

Options	
C	Retest
	Enters starting screen for a new measurement.
	Refer to chapter 6.1.3 Single test start screen for more information.
	Opens menu for viewing parameters and limits.
Uiso 500 V Type Riso L/N Limit(Riso) 2 ΜΩ	Refer to chapter 6.1.2 Setting parameters and limits of single tests for more information.
444	Expands column in control panel.
<u>i</u>	

7 Tests and measurements

See chapter 6.1 Selection modes for instructions on keys and touch screen functionality.

7.1 Voltage, frequency and phase sequence

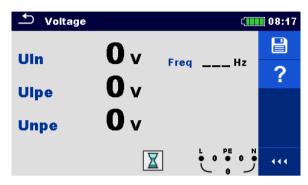


Figure 7.1: Voltage measurement menu

Measurement parameters / limits

There are no parameters / limits to be set.

Connection diagrams

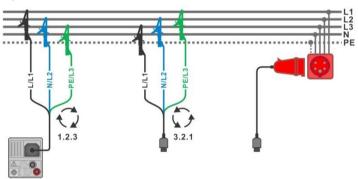


Figure 7.2: Connection of 3-wire test lead and optional adapter in three-phase system

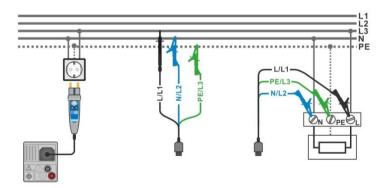
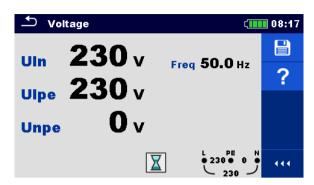



Figure 7.3: Connection of Plug commander and 3-wire test lead in single-phase system

Measurement procedure

- Enter the Voltage function.
- Connect test cable to the instrument.
- Connect test leads to object under test (see Figure 7.2 and Figure 7.3).

- Measurement runs immediately after entering to menu.
- Save results (optional).

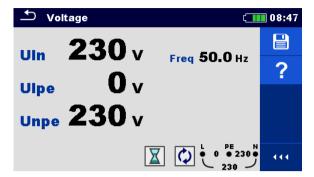
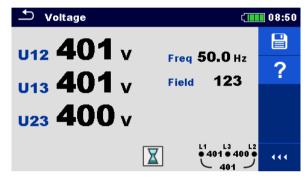



Figure 7.4: Examples of Voltage measurement in single-phase system

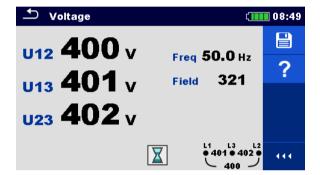


Figure 7.5: Examples of Voltage measurement in three-phase system

Measurement results / sub-results

Single-phase system

Uln	voltage between phase and neutral conductors
Ulpe	voltage between phase and protective conductors
Unpe	voltage between neutral and protective conductors
Freq	frequency

Three-phase system

U12	voltage between phases L1 and L2
U13	voltage between phases L1 and L3
U23	voltage between phases L2 and L3
Freq	frequency
Field	1.2.3 - correct connection – CW rotation sequence
	3.2.1 - invalid connection – CCW rotation sequence

IT earthing system (selection of IT earthling system required)

U12	voltage between phases L1 and L2
U1pe	voltage between phase L1 and PE
U2pe	voltage between phase L2 and PE
Freq	frequency

7.2 R iso - Insulation resistance

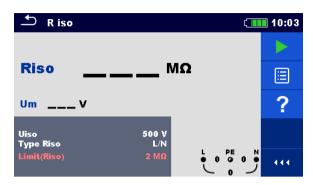


Figure 7.6: Insulation resistance measurement menu

Measurement parameters / limits

Uiso	Nominal test voltage [50 V, 100 V, 250 V, 500 V, 1000 V, 2500 V*]	
Type Riso	Type of test [L/PE, L/N, N/PE, L/L]	
Limit(Riso)	Min. insulation resistance [Off, 0.01 M Ω 100 M Ω]	

^{*} Nominal test voltage 2500 V is available on MI 3152H only.

Connection diagrams

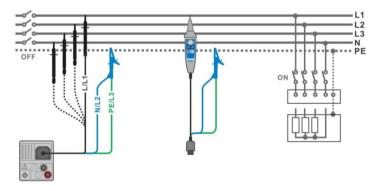


Figure 7.7: Connection of 3-wire test lead and Tip commander (U_N≤1 kV)

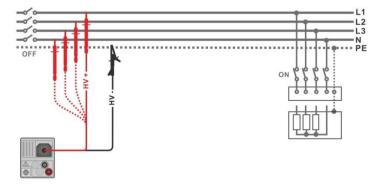


Figure 7.8: Connection of 2.5 kV test lead (U_N =2.5 kV)

Measurement procedure

- Enter the R iso function.
- Set test parameters / limits.
- Disconnect tested installation from mains supply and discharge installation as required.
- Connect test cable to the instrument.
- Connect test leads to object under test (see Figure 7.7 and Figure 7.8).
 Different test cable must be used for testing with nominal test voltage U_N ≤ 1000 V and U_N= 2500 V. Also different test terminals are used.

The standard 3-wire test lead, Schuko test cable or Plug / Tip commanders can be used for the insulation test with nominal test voltages ≤ 1000 V. For the 2500 V insulation test the two wire 2.5 kV test lead should be used.

- Start the measurement. A longer press on TEST key or a longer press on "Start test" option on touch screen starts a continuous measurement.
- > Stop the measurement. Wait until object under test is fully discharged.
- Save results (optional).

Figure 7.9: Examples of Insulation resistance measurement result

Measurement results / sub-results

Riso Insulation resistance
Um Actual test voltage

7.3 The DAR and PI diagnostic (MI 3152H only)

DAR (<u>Dielectric</u> <u>Absorption</u> <u>Ration</u>) is ratio of insulation resistance values measured after 15 seconds and after 1 minute. The DC test voltage is present during the whole period of the measurement.

$$DAR = \frac{R_{ISO}(1 \text{ min})}{R_{ISO}(15 \text{ s})}$$

PI (<u>P</u>olarization <u>I</u>ndex) is the ratio of insulation resistance values measured after 1 minute and after 10 minutes. The DC test voltage is present during the whole period of the measurement

$$PI = \frac{R_{ISO}(10 \text{ min})}{R_{ISO}(1 \text{ min})}$$

For additional information regarding PI and DAR diagnostic, please refer to Metrel's handbook **Modern insulation testing**.

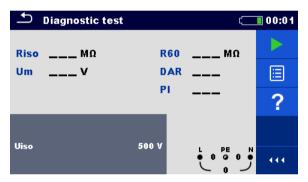


Figure 7.10: Diagnostic test menu

Measurement parameters / limits

Uiso Nominal test voltage [500 V, 1000 V, 2500 V]

Connection diagrams

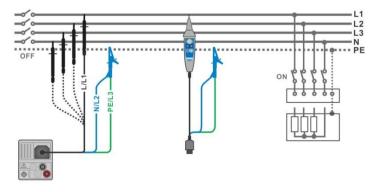


Figure 7.11: Connection of 3-wire test lead and Tip commander (U_N≤1 kV)

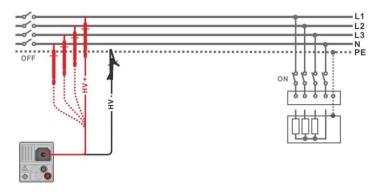


Figure 7.12: Connection of 2.5 kV test lead ($U_N = 2.5 \text{ kV}$)

Measurement procedure

- Enter the Diagnostic test function.
- Set test parameters / limits.
- Disconnect tested installation from mains supply and discharge installation as required.
- Connect test cable to the instrument.
- Connect test leads to object under test (see *Figure 7.11* and *Figure 7.12*). Different test cable must be used for testing with nominal test voltage $U_N \le 1000 \text{ V}$ and $U_N = 2500 \text{ V}$. Also different test terminals are used.

The standard 3-wire test lead, Schuko test cable or Plug / Tip commanders can be used for the insulation test with nominal test voltages ≤ 1000 V. For the 2500 V insulation test the two wire 2.5 kV test lead should be used.

- Start the measurement. Internal timer begins to increment. When internal timer reaches 1 min R60 and DAR factor are displayed and short beep is generated. Measurement can be interrupted at any time.
- When internal timer reaches 10 min also PI factor is displayed and measurement is completed. Wait until object under test is fully discharged.
- After the measurement is finished wait until tested item is fully discharged.
- Save results (optional).

Figure 7.13: Examples of Diagnostic test result

Measurement results / sub-results

Riso	Insulation resistance	
Um	Actual test voltage	
R60	Resistance after 60 seconds	
DAR	Dielectric absorption ratio	
PI	Polarization index	

7.4 R low – Resistance of earth connection and equipotential bonding

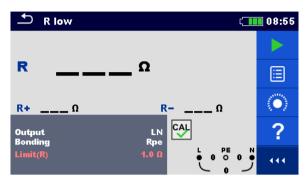


Figure 7.14: R low measurement menu

Measurement parameters / limits

Output	[LN]
Bonding	[Rpe, Local]
Limit(R)	Max. resistance [Off, 0.1 Ω 20.0 Ω]

Connection diagram

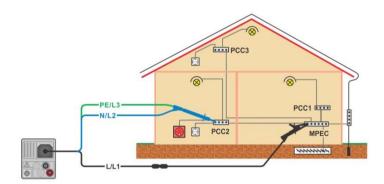


Figure 7.15: Connection of 3-wire test lead plus optional Extension lead

Measurement procedure

- Enter the R low function.
- Set test parameters / limits.
- Connect test cable to the instrument.
- Compensate the test leads resistance if necessary, see section 7.5.1 Compensation of test leads resistance.
- Disconnect tested installation from mains supply and discharge insulation as required.
 - Start the measurement.
 - Save results (optional).

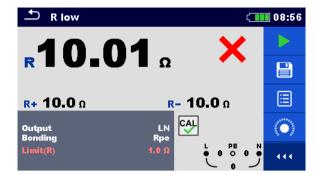
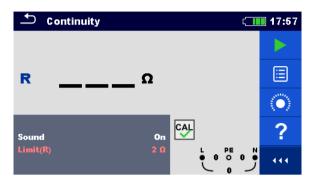


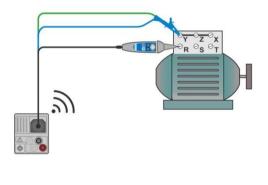
Figure 7.16: Examples of R low measurement result

Measurement results / sub-results

R	Resistance
R+	Result at positive test polarity
R-	Result at negative test polarity

7.5 Continuity – Continuous resistance measurement with low current




Figure 7.17: Continuity resistance measurement menu

Measurement parameters / limits

Sound	[On*, Off]
Limit(R)	Max. resistance [Off, 0.1 Ω 20.0 Ω]

^{*}Instrument sounds if resistance is lower than the set limit value.

Connection diagrams

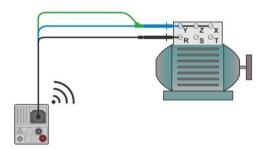


Figure 7.18: Tip commander and 3-wire test lead applications

Measurement procedure

- Enter the Continuity function.
- Set test parameters / limits.
- Connect test cable to the instrument.

- Compensate the test leads resistance if necessary, see section 7.5.1 Compensation of test leads resistance.
- Disconnect device under test from mains supply and discharge it as required.
- Connect test leads to device under test, see Figure 7.18.
- Start the measurement.
- Stop the measurement.
- Save results (optional).

Figure 7.19: Examples of Continuity resistance measurement result

Measurement results / sub-results

R Resistance

7.5.1 Compensation of test leads resistance

This chapter describes how to compensate the test leads resistance in **R low** and **Continuity** functions. Compensation is required to eliminate the influence of test leads resistance and the internal resistances of the instrument on the measured resistance. The lead compensation is therefore a very important feature to obtain correct result.

symbol is displayed if the compensation was carried out successfully.

Connections for compensating the resistance of test leads

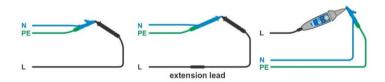


Figure 7.20: Shorted test leads

Compensation of test leads resistance procedure

- Enter R low or Continuity function.
- Connect test cable to the instrument and short the test leads together, see Figure 7.20.

Touch the key to compensate leads resistance.

Figure 7.21: Result with old and new calibration values

7.6 Testing RCDs

Various test and measurements are required for verification of RCD(s) in RCD protected installations. Measurements are based on the EN 61557-6 standard.

The following measurements and tests (sub-functions) can be performed:

- Contact voltage,
- Trip-out time.
- Trip-out current and
- RCD Auto test.

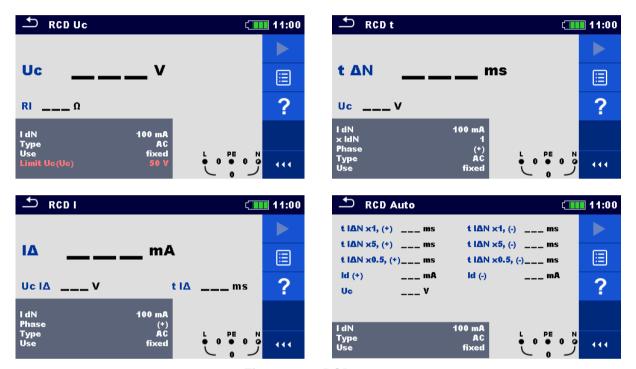


Figure 7.22: RCD menus

Test parameters / limits

I dN	Rated RCD residual current sensitivity [10 mA, 30 mA, 100 mA, 300 mA, 500 mA, 1000 mA]	
Туре	RCD type [AC, A, F, B*, B+*]	
Use	RCD / PRCD selection [fixed, PRCD, PRCD-S, PRCD-K]	
Selectivity	Characteristic [G, S]	
X IdN	Multiplication factor for test current [0.5, 1, 2, 5]	
Phase	Starting polarity [+, -]	
Limit Uc	Conventional touch voltage limit [25 V, 50 V]	

^{*} Model MI 3152 only.

Connection diagram

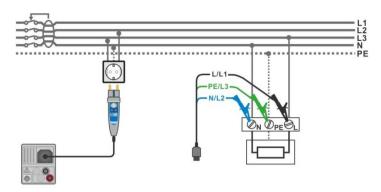


Figure 7.23: Connecting the Plug commander and the 3-wire test lead

7.6.1 RCD Uc - Contact voltage

Test procedure

Enter the RCD Uc function.
Set test parameters / limits.
Connect test cable to the instrument.
Connect test leads or Plug commander to the object under test, see Figure 7.23.
Start the measurement.
Save results (optional).

The contact voltage result relates to the rated nominal residual current of the RCD and is multiplied by an appropriate factor (depending on RCD type and type of test current). The 1.05 factor is applied to avoid negative tolerance of result. See *Table 7.1* for detailed contact voltage calculation factors.

RCD t	уре	Contact voltage Uc proportional to	Rated I _{∆N}	Notes
AC	G	1.05×I _{∆N}	any	
AC	S	2×1.05×I _{ΔN}		
A, F	G	1.4×1.05×I _{∆N}	≥ 30 mA	All models
A, F	S	2×1.4×1.05×I _{ΔN}		All models
A, F	G	2×1.05×I _{ΔN}	< 30 mA	
A, F	S	2×2×1.05×I _{ΔN}		
B, B+	G	2×1.05×I _{ΔN}	any	Model MI 3152 only
B, B+	S	2×2×1.05×I _{ΔN}		Widder Wil 3 132 Offly

Table 7.1: Relationship between Uc and I_{AN}

Fault Loop resistance is indicative and calculated from Uc result (without additional proportional factors) according to: $R_L = \frac{U_C}{I_{\Delta N}}$.

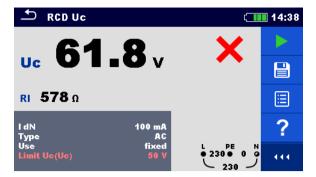
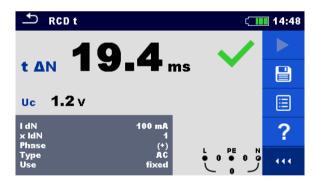


Figure 7.24: Examples of Contact voltage measurement result


Test result / sub-results

Uc	Contact voltage
RI	Calculated fault loop resistance

7.6.2 RCD t - Trip-out time

Test procedure

Enter the RCD t function.
Set test parameters / limits.
Connect test cable to the instrument.
Connect test leads or Plug commander to the object under test, see Figure 7.23.
Start the measurement.
Save results (optional).

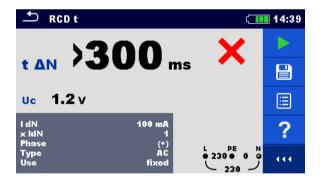


Figure 7.25: Examples of Trip-out time measurement result

Test results / sub-results

t ∆N	Trip-out time
Uc	Contact voltage for rated $I_{\Delta N}$

7.6.3 RCD I - Trip-out current

The instrument increases the test current in small steps through appropriate range as follows:

RCD type	Slope range		Waveform	Notes	
KCD type	Start value	End value	wavelonii	Notes	
AC	0.2×I _{∆N}	1.1×I _{ΔN}	Sine		
A, F (I _{∆N} ≥ 30 mA)	0.2×I _{∆N}	1.5×I _{ΔN}	Pulsed	All models	
A, F ($I_{\Delta N} = 10 \text{ mA}$)	$0.2 \times I_{\Delta N}$	2.2×I _{ΔN}	Fuiseu		
B, B+	0.2×I _{∆N}	2.2×I _{ΔN}	DC	Model MI 3152 only	

Maximum test current is I_{Δ} (trip-out current) or end value in case the RCD didn't trip-out.

Test procedure

- Enter the RCD I function.
 Set test parameters / limits.
 Connect test cable to the instrument.
 Connect test leads or Plug commander to the object under test, see Figure 7.23.
 Start the measurement.

Save results (optional).

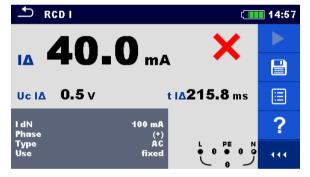
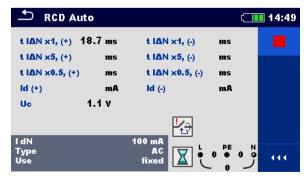
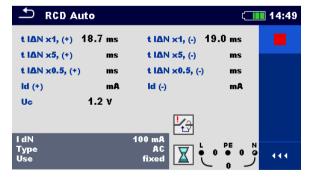


Figure 7.26: Examples of Trip-out current measurement result

Test results / sub-results


IΔ	Trip-out current
Uc I∆	Contact voltage at trip-out current I∆ or end value if the RCD didn't trip
t I∆	Trip-out time at trip-out current I∆


7.7 RCD Auto - RCD Auto test

RCD Auto test function performs a complete RCD test (trip-out time at different residual currents, trip-out current and contact voltage) in one set of automatic tests, guided by the instrument.

RCD Auto test procedure

R	RCD Auto test steps Notes		
•	Enter the RCD Auto function.		
•	Set test parameters / limits.		
•	Connect test cable to the instrument.		
•	Connect test leads or Plug commander to the object		
	under test, see <i>Figure 7.23</i>		
•	Start the measurement.	Start of test	
	Test with $I_{\Delta N}$, (+) positive polarity (step 1).	RCD should trip-out	
•	Re-activate RCD.		
	Test with $I_{\Delta N}$, (-) negative polarity (step 2).	RCD should trip-out	
•	Re-activate RCD.		
	Test with $5 \times I_{\Delta N}$, (+) positive polarity (step 3).	RCD should trip-out	
•	Re-activate RCD.		
	Test with $5 \times I_{\Delta N}$, (-) negative polarity (step 4).	RCD should trip-out	
•	Re-activate RCD.		
	Test with $\frac{1}{2} \times I_{\Delta N}$, (+) positive polarity (step 5).	RCD should not trip-	
		out	
	Test with $\frac{1}{2} \times I_{\Delta N}$, (-) negative polarity (step 6).	RCD should not trip-	
		out	
	Trip-out current test, (+) positive polarity (step 7).	RCD should trip-out	
•	Re-activate RCD.		
	Trip-out current test, (-) negative polarity (step 8).	RCD should trip-out	
•	Re-activate RCD.		
	Save results (optional).	End of test	

Step 1 Step 2

Figure 7.27: Individual steps in RCD Auto test

Test results / sub-results

t I∆N x1, (+)	Step 1 trip-out time ($I_{\Delta}=I_{\Delta N}$, (+) positive polarity)
t I∆N x1, (-)	Step 2 trip-out time ($I_{\Delta}=I_{\Delta N}$, (-) negative polarity)
t I∆N x5, (+)	Step 3 trip-out time (I_{Δ} =5× $I_{\Delta N}$, (+) positive polarity)
t I∆N x5, (-)	Step 4 trip-out time (I_{Δ} =5× $I_{\Delta N}$, (-) negative polarity)
t I∆N x0.5, (+)	Step 5 trip-out time ($I_{\Delta}=\frac{1}{2}\times I_{\Delta N}$, (+) positive polarity)
t I∆N x0.5, (-)	Step 6 trip-out time ($I_{\Delta}=\frac{1}{2}\times I_{\Delta N}$, (-) negative polarity)
ld (+)	Step 7 trip-out current ((+) positive polarity)
ld (-)	Step 8 trip-out current ((-) negative polarity)
Uc	Contact voltage for rated $I_{\Delta N}$

7.8 Z loop – Fault loop impedance and prospective fault current

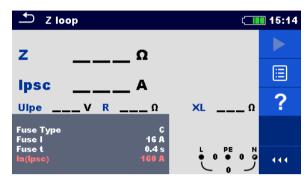


Figure 7.28: Z loop menu

Measurement parameters / limits

Fuse Type	Selection of fuse type [gG, NV, B, C, D, K]
Fuse I	Rated current of selected fuse
Fuse t	Maximum breaking time of selected fuse
la(lpsc)	Minimum fault current for selected fuse

See Appendix A for reference fuse data.

Connection diagram

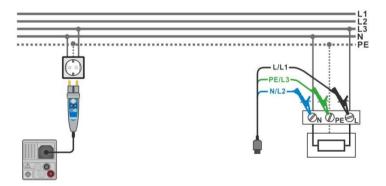


Figure 7.29: Connection of Plug commander and 3-wire test lead

Measurement procedure

- Enter the **Z loop** function.
- Set test parameters / limits.Connect test cable to the instrument.
- Connect test leads or Plug commander to the object under test, see Figure 7.29.
- Start the measurement.
- Save results (optional).

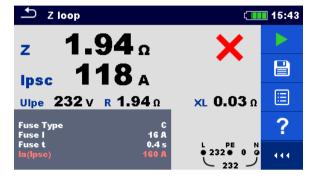


Figure 7.30: Examples of Loop impedance measurement result

Measurement results / sub-results

Z	Loop impedance
lpsc	Prospective fault current
Ulpe	Voltage L-PE
R	Resistance of loop impedance
XL	Reactance of loop impedance

Prospective fault current I_{PSC} is calculated from measured impedance as follows:

$$I_{PSC} = \frac{U_N \times k_{SC}}{Z}$$

where:

 U_nNominal U_{L-PE} voltage (see table below),

k_{sc} Correction factor (Isc factor) for I_{PSC} (see chapter 4.6.4 Settings).

	Input voltage range (L-PE)
110 V	$(93 \text{ V} \le U_{L-PE} \le 134 \text{ V})$
230 V	$(185 \text{ V} \le U_{L-PE} \le 266 \text{ V})$

7.9 Zs rcd – Fault loop impedance and prospective fault current in system with RCD

Zs rcd measurement prevents trip-out of the RCD in systems with the RCD.

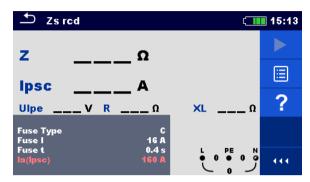


Figure 7.31: Zs rcd menu

Measurement parameters / limits

Fuse Type	Selection of fuse type [gG, NV, B, C, D, K]
Fuse I	Rated current of selected fuse
Fuse t	Maximum breaking time of selected fuse
la(lpsc)	Minimum fault current for selected fuse
Caa Annand	liv A for reference fues data

See Appendix A for reference fuse data.

Connection diagram

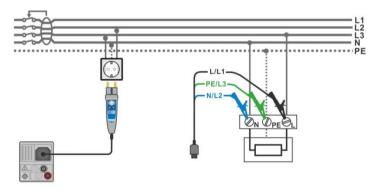
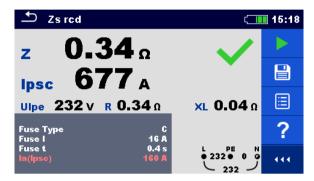



Figure 7.32: Connection of Plug commander and 3-wire test lead

Measurement procedure

•	Enter the Zs rcd function.
+	Set test parameters / limits.
•	Connect test cable to the instrument.
	Connect test leads or Plug commander to the object under

- Connect test leads or Plug commander to the object under test, see *Figure 7.32*.
- Start the measurement.
- Save results (optional).

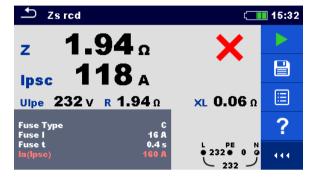


Figure 7.33: Examples of Zs rcd measurement result

Measurement results / sub-results

Z	Loop impedance
lpsc	Prospective fault current
Ulpe	Voltage L-PE
R	Resistance of loop impedance
XL	Reactance of loop impedance

Prospective fault current I_{PSC} is calculated from measured impedance as follows:

$$I_{PSC} = \frac{U_N \times k_{SC}}{Z}$$

where:

 U_nNominal U_{L-PE} voltage (see table below),

k_{sc} Correction factor (Isc factor) for I_{PSC} (see chapter **4.6.4 Settings**).

	Input voltage range (L-PE)
110 V	$(93 \text{ V} \le U_{L-PE} \le 134 \text{ V})$
230 V	$(185 \text{ V} \le U_{L-PE} \le 266 \text{ V})$

7.10 Z loop $m\Omega$ – High precision fault loop impedance and prospective fault current

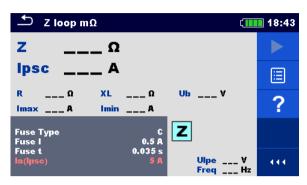


Figure 7.34: Z loop mΩ menu

Measurement parameters / limits

Fuse Type	Selection of fuse type [gG, NV, B, C, D, K]
Fuse I	Rated current of selected fuse
Fuse t	Maximum breaking time of selected fuse
la(lpsc)	Minimum fault current for selected fuse

See Appendix A for reference fuse data.

Connection diagram

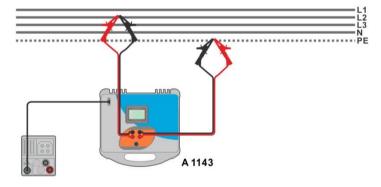


Figure 7.35: High precision Loop impedance measurement - Connection of A 1143

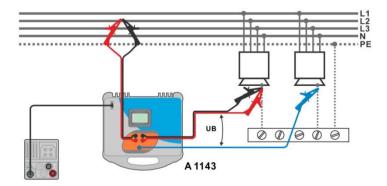


Figure 7.36: Contact voltage measurement - Connection of A 1143

Measurement procedure

- Enter the **Z** loop $m\Omega$ function.
- Set test parameters / limits.
- Connect test leads to A 1143 Euro Z 290 A adapter and switch it on.
- Connect A 1143 Euro Z 290 A adapter to the instrument using RS232-PS/2 cable.
- Connect test leads to the object under test, see Figure 7.35 and Figure 7.36.
- Start the measurement using or button.
- Save results (optional).

Figure 7.37: Examples of high precision Loop impedance measurement result

Measurement results / sub-results

Z	Loop impedance
lpsc	Standard prospective fault current
lmax	Maximal prospective fault current
lmin	Minimal prospective fault current
Ub	Contact voltage at maximal prospective fault current (contact voltage measured against Probe S if used)
R	Resistance of loop impedance
XL	Reactance of loop impedance
Ulpe	Voltage L-PE
Freq	Frequency

Standard prospective fault current I_{PSC} is calculated as follows:

$$I_{PSC} = \frac{230 \, V}{Z}$$
 where $U_{L-PE} = 230 \, V \, \pm 10 \, \%$

The prospective fault currents I_{Min} and I_{Max} are calculated as follows:

$$I_{Min} = \frac{C_{min}U_{N(L-PE)}}{Z_{(L-PE)hot}} \qquad \text{where} \qquad \begin{aligned} Z_{(L-PE)hot} &= \sqrt{(1.5R_{L-PE})^2 + X_{L-PE}^2} \\ C_{min} &= \begin{cases} 0.95; \ U_{N(L-PE)} = 230 \ V \ \pm 10 \ \% \\ 1.00; \ otherwise \end{aligned} \end{aligned}$$
 and
$$I_{Max} = \frac{C_{max}U_{N(L-PE)}}{Z_{L-PE}} \qquad \text{where} \qquad \begin{aligned} Z_{L-PE} &= \sqrt{R_{L-PE}^2 + X_{L-PE}^2} \\ C_{max} &= \begin{cases} 1.05; \ U_{N(L-PE)} = 230 \ V \ \pm 10 \ \% \\ 1.10; \ otherwise \end{aligned}$$

Refer to A 1143 – Euro Z 290 A adapter Instruction manual for detailed information.

7.11 Z line – Line impedance and prospective short-circuit current

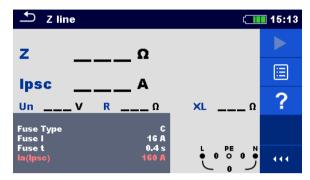


Figure 7.38: Z line measurement menu

Measurement parameters / limits

Fuse Type	Selection of fuse type [gG, NV, B, C, D, K]
Fuse I	Rated current of selected fuse
Fuse t	Maximum breaking time of selected fuse
la(lpsc)	Minimum short-circuit current for selected fuse
Caa Annandiy	A for reference fuse data

See Appendix A for reference fuse data.

Connection diagram

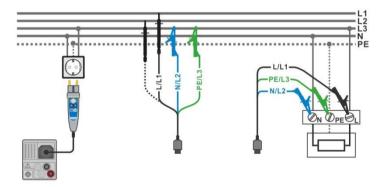


Figure 7.39: Phase-neutral or phase-phase line impedance measurement – connection of Plug commander and 3-wire test lead

Measurement procedure

- Enter the Z line function.
 Set test parameters / limits.
 Connect test cable to the instrument.
 Connect test leads or Plug commander to the object under test, see Figure 7.39.
- Start the measurement.
 - Save results (optional).

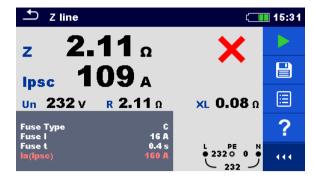


Figure 7.40: Examples of Line impedance measurement result

Measurement results / sub-results

Z	Line impedance
lpsc	Prospective short-circuit current
Un	Voltage L-N
R	Resistance of line impedance
XL	Reactance of line impedance

Prospective short circuit current I_{PSC} is calculated as follows:

$$I_{PSC} = \frac{U_N \times k_{SC}}{Z}$$

where:

U_n......Nominal U_{L-N} or U_{L-L} voltage (see table below),

 k_{SC} Correction factor (Isc factor) for I_{PSC} (see chapter **4.6.4 Settings**).

Un	Input voltage range (L-N or L-L)
110 V	$(93 \text{ V} \le U_{L-N} \le 134 \text{ V})$
	$(185 \text{ V} \le U_{L-N} \le 266 \text{ V})$
	$(321 \text{ V} \le \text{U}_{\text{L-L}} \le 485 \text{ V})$

7.12 Z line $m\Omega$ – High precision line impedance and prospective short-circuit current

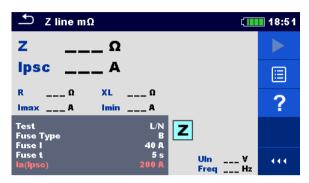


Figure 7.41: Z line mΩ menu

Measurement parameters / limits

Test	Type of test [L/N, L/L]
Fuse Type	Selection of fuse type [gG, NV, B, C, D, K]
Fuse I	Rated current of selected fuse
Fuse t	Maximum breaking time of selected fuse
la(lpsc)	Minimum short circuit current for selected fuse
Cae Appendix	A for reference fues data

See Appendix A for reference fuse data.

Connection diagram

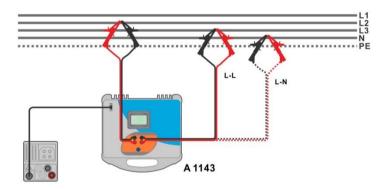


Figure 7.42: Phase-neutral or phase-phase high precision Line impedance measurement – Connection of A 1143

Measurement procedure

- Enter the **Z** line $m\Omega$ function.
- Set test parameters / limits.
- Connect test leads to A 1143 Euro Z 290 A adapter and switch it on.
- Connect A 1143 Euro Z 290 A adapter to the instrument using RS232-PS/2 cable.
- Connect test leads to the object under test, see Figure 7.42.

- Start the measurement using or button.
- Save results (optional).

Figure 7.43: Examples of high precision Line impedance measurement result

Measurement results / sub-results

_ Z	Line impedance
lpsc	Standard prospective short-circuit current
lmax	Maximal prospective short-circuit current
lmin	Minimal prospective short-circuit current
lmax2p	Maximal two-phases prospective short-circuit current
lmin2p	Minimal two-phases prospective short-circuit current
lmax3p	Maximal three-phases prospective short-circuit current
lmin3p	Minimal three-phases prospective short-circuit current
R	Resistance of line impedance
XL	Reactance of line impedance
Uln	Voltage L-N or L-L
Freq	Frequency

Standard prospective short-circuit current I_{PSC} is calculated as follows:

$$I_{PSC}=rac{230\,V}{Z}$$
 where $U_{L-N}=230\,V\,\pm10\,\%$
$$I_{PSC}=rac{400\,V}{Z}$$
 where $U_{L-L}=400\,V\,\pm10\,\%$

The prospective short-circuit currents I_{Min} , I_{Min2p} , I_{Min3p} and I_{Max} , I_{Max2p} , I_{Max3p} are calculated as follows:

$$I_{Min} = \frac{C_{min}U_{N(L-N)}}{Z_{(L-N)hot}} \qquad \qquad \text{where} \qquad \begin{aligned} Z_{(L-N)hot} &= \sqrt{(1.5 \times R_{(L-N)})^2 + X_{(L-N)}^2} \\ C_{min} &= \begin{cases} 0.95; \ U_{N(L-N)} = 230 \ V \ \pm 10 \ \% \\ 1.00; \ otherwise \end{aligned}$$

$$I_{Max} = \frac{C_{max}U_{N(L-N)}}{Z_{(L-N)}} \qquad \qquad \text{where} \qquad \begin{aligned} Z_{(L-N)} &= \sqrt{R_{(L-N)}^2 + X_{(L-N)}^2} \\ C_{max} &= \begin{cases} 1.05; U_{N(L-N)} = 230 \ V \ \pm \ 10 \ \% \\ 1.10; \ otherwise \end{aligned}$$

$$I_{Min2p} = \frac{C_{min}U_{N(L-L)}}{Z_{(L-L)hot}} \qquad \text{where} \qquad \frac{Z_{(L-L)hot} = \sqrt{(1.5 \times R_{(L-L)})^2 + X_{(L-L)}^2}}{C_{min}} = \begin{cases} 0.95; \ U_{N(L-L)} = 400 \ V \pm 10 \ \% \\ 1.00; \ otherwise \end{cases}$$

$$I_{Max2p} = \frac{C_{max}U_{N(L-L)}}{Z_{(L-L)}} \qquad \text{where} \qquad \frac{Z_{(L-L)} = \sqrt{R_{(L-L)}^2 + X_{(L-L)}^2}}{C_{max}} = \begin{cases} 1.05; \ U_{N(L-L)} = 400 \ V \pm 10 \ \% \\ 1.10; \ otherwise \end{cases}$$

$$I_{Min3p} = \frac{C_{min} \times U_{N(L-L)}}{\sqrt{3}} \frac{2}{Z_{(L-L)hot}} \qquad \text{where} \qquad \frac{Z_{(L-L)hot} = \sqrt{(1.5 \times R_{(L-L)})^2 + X_{(L-L)}^2}}{C_{min}} = \begin{cases} 0.95; \ U_{N(L-L)} = 400 \ V \pm 10 \ \% \\ 1.00; \ otherwise \end{cases}$$

$$I_{Max3p} = \frac{C_{max} \times U_{N(L-L)}}{\sqrt{3}} \frac{2}{Z_{(L-L)}} \qquad \text{where} \qquad \frac{Z_{(L-L)} = \sqrt{R_{(L-L)}^2 + X_{(L-L)}^2}}{C_{max}} = \begin{cases} 1.05; \ U_{N(L-L)} = 400 \ V \pm 10 \ \% \\ 1.10; \ otherwise \end{cases}$$

Refer to A 1143 - Euro Z 290 A adapter Instruction manual for detailed information.

7.13 Voltage Drop

The voltage drop is calculated based on the difference of line impedance at connection points (sockets) and the line impedance at the reference point (usually the impedance at the switchboard).

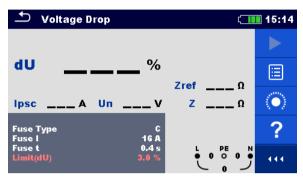


Figure 7.44: Voltage drop menu

Measurement parameters / limits

Fuse Type	Selection of fuse type [gG, NV, B, C, D, K]
Fuse I	Rated current of selected fuse
Fuse t	Maximum breaking time of selected fuse
Limit(dU)	Maximum voltage drop [3.0 % 9.0 %]
Coo Annond	liv A for reference fues data

See Appendix A for reference fuse data.

Connection diagram

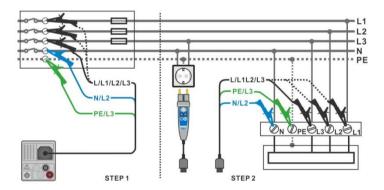


Figure 7.45: Voltage drop measurement – connection of Plug commander and 3-wire test lead

Measurement procedure

STEP 1: Measuring the impedance Zref at origin

- Enter the Voltage Drop function.
- Set test parameters / limits.
- Connect test cable to the instrument.
- Connect test leads to the origin of electrical installation, see Figure 7.45.
- Touch or select the icon to initiate Zref measurement.

Press the button to measure Zref.

STEP 2: Measuring the Voltage drop

- Enter the Voltage Drop function.
- Set test parameters / limits.
- Connect test cable to the instrument.
- Connect test leads or Plug commander to the tested points, see *Figure 7.45*.
- Start the measurement.
- Save results (optional).

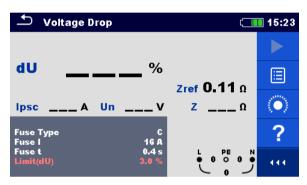


Figure 7.46: Example of Zref measurement result (STEP 1)

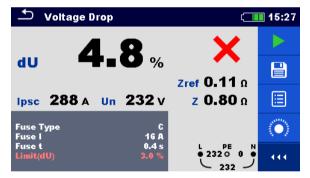


Figure 7.47: Examples of Voltage drop measurement result (STEP 2)

Measurement results / sub-results

dU	Voltage drop
lpsc	Prospective short-circuit current
Un	Voltage L-N
Zref	Reference line impedance
Z	Line impedance

Voltage drop is calculated as follows:

$$dU[\%] = \frac{(Z - Z_{REF}) \cdot I_N}{U_N} \cdot 100$$

where:

dU	Calculated Voltage drop
Zref	Impedance at reference point (at origin)
Z	Impedance at test point
Un	Nominal voltage
I _n	Rated current of selected fuse (Fuse I)

Un	Input voltage range (L-N or L-L)
110 V	$(93 \text{ V} \le U_{L-N} \le 134 \text{ V})$
230 V	$(185 \text{ V} \le U_{L-N} \le 266 \text{ V})$
400 V	$(321 \text{ V} \le U_{L-L} \le 485 \text{ V})$

7.14 Earth – Earth resistance (3-wire test)

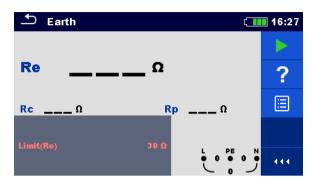


Figure 7.48: Earth menu

Measurement parameters / limits

Limit(Re) Maximum resistance [Off, 1 Ω ... 5 $k\Omega$]

Connection diagrams

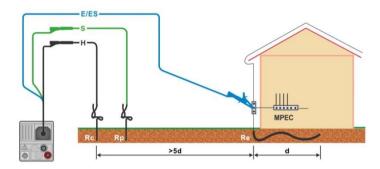


Figure 7.49: Resistance to earth, measurement of main installation earthing

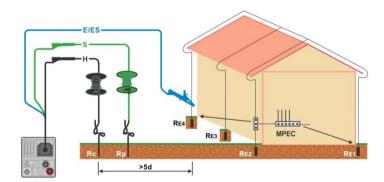
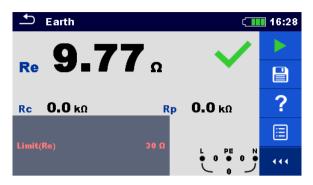



Figure 7.50: Resistance to earth, measurement of a lighting protection system

Measurement procedure

- Enter the **Earth** function.
- Set test parameters / limits.
- Connect test cable to the instrument.
- Connect test leads to the object under test, see *Figure 7.49* and *Figure 7.50*.

- Start the measurement.
- Save results (optional).

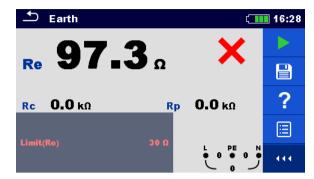


Figure 7.51: Examples of Earth resistance measurement result

Measurement results / sub-results

Re	Earth resistance
Rc	Resistance of H (current) probe
Rp	Resistance of S (potential) probe

7.15 Earth 2 clamp – Contactless earthing resistance measurement (with two current clamps)

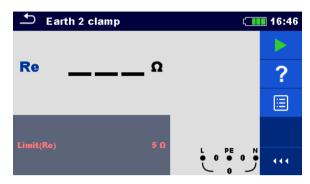


Figure 7.52: Earth 2 clamps menu

Measurement parameters / limits

Limit(Re) Maximum resistance [Off, 1 Ω ... 30 Ω]

Connection diagram

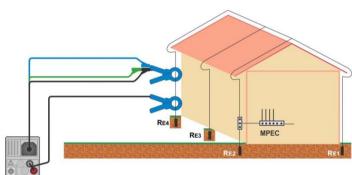


Figure 7.53: Contactless earthing resistance measurement

Measurement procedure

Enter the Earth 2 clamp function.
Set test parameters / limits.
Connect test cable and clamps to the instrument.
Clamp on object under test, see Figure 7.53.
Start the measurement.
Stop the measurement.
Save results (optional).

Figure 7.54: Examples of Contactless earthing resistance measurement result

Measurement results / sub-results

Re Earth resistance

7.16 Ro – Specific earth resistance

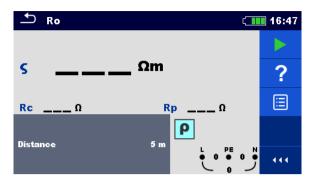


Figure 7.55: Earth Ro menu

Measurement parameters / limits

Distance Distance between probes [0.1 m ... 30.0 m] or [1 ft ... 100 ft]

Connection diagram

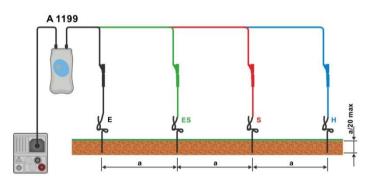


Figure 7.56: Specific earth resistance measurement

Measurement procedure

- Enter the Ro function.
- Set test parameters / limits.
- Connect A 1199 adapter to the instrument.
- Connect test leads to earth probes, see *Figure 7.56*.
- Start the measurement.
- Save results (optional).

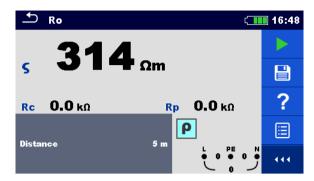


Figure 7.57: Example of Specific earth resistance measurement result

ρ	Specific earth resistance	
Rc	Resistance of H, E (current) probe	
Rp	Resistance of S, ES (potential) probe	

7.17 Power

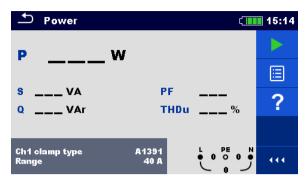


Figure 7.58: Power menu

Measurement parameters / limits

Ch1 clamp type	Current clamp adapter [A1018, A1019, A1391]
Range	Range for selected current clamp adapter
	A1018 [20 A]
	A1019 [20 A]
	A1391 [40 A, 300 A]

Connection diagram

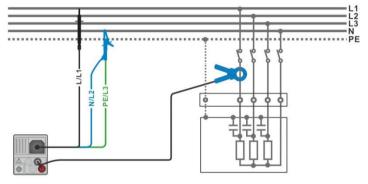


Figure 7.59: Power measurement

Measurement procedure

- Enter the **Power** function.
- Set parameters / limits.
- Connect the voltage test leads and current clamp to the instrument.
- Connect the voltage test leads and current clamp to the item to be tested (see *Figure* 7.59).
- Start the continuous measurement.
- Stop the measurement.
- Save results (optional).



Figure 7.60: Example of Power measurement result

Р	Active power	
S	Apparent power	
Q	Reactive power (capacitive or inductive)	
PF	Power factor (capacitive or inductive)	
THDu	Voltage total harmonic distortion	

7.18 Harmonics

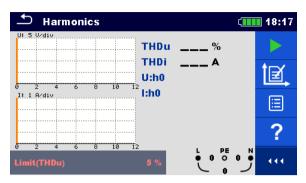


Figure 7.61: Harmonics menu

Measurement parameters / limits

Ch1 clamp type	Current clamp adapter [A1018, A1019, A1391]
Range	Range for selected current clamp adapter
	A1018 [20 A]
	A1019 [20 A]
	A1391 [40 A, 300 A]
Limit(THDu)	Max. THD of voltage [3 % 10 %]

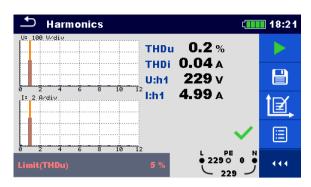

Connection diagram

Figure 7.62: Harmonics measurement

Measurement procedure

- Enter the Harmonics function.
- Set parameters / limits.
- Connect voltage test leads and current clamp to the instrument.
- Connect the voltage test leads and current clamp to the item to be tested, see Figure 7.62.
- Start the continuous measurement.
 - Stop the measurement.
 - Save results (optional).

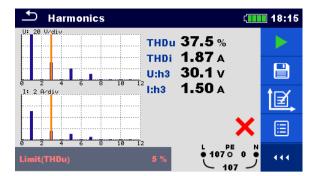


Figure 7.63: Examples of Harmonics measurement results

U:h(i)	TRMS voltage of selected harmonic [h0 h12]	
I:h (i)	TRMS current of selected harmonic [h0 h12]	
THDu	Voltage total harmonic distortion	
THDi	Current total harmonic distortion	

7.19 Currents

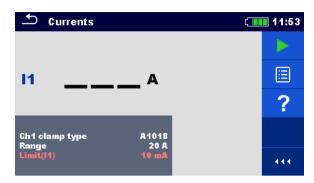


Figure 7.64: Current menu

Measurement parameters / limits

Ch1 clamp type	Current clamp adapter [A1018, A1019, A1391]
Range	Range for selected current clamp adapter
_	A1018 [20 A]
	A1019 [20 A]
	A1391 [40 A, 300 A]
Limit(I1)	Max. differential leakage [Off, 0.1 mA 100 mA]

Connection diagram

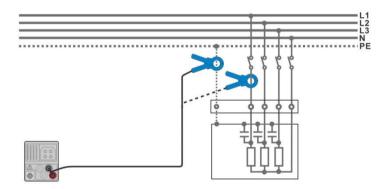


Figure 7.65: Leakage and load current measurements

Measurement procedure

- Enter the Currents function.
 Set parameters / limits.
 Connect the current clamp to the instrument.
 Connect the clamp to the object under test, see Figure 7.65.
 Start the continuous measurement.
 - Stop the measurement.
 - Save results (optional).

Figure 7.66: Examples of Current measurement result

Measurement results / sub-results

I1 Leakage or load current

7.20 ISFL – First fault leakage current (MI 3152 only)

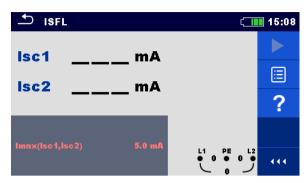


Figure 7.67: ISFL measurement menu

Measurement parameters / limits

Imax(Isc1, Isc2) Maximum first fault leakage current [Off, 3.0 mA ... 19.5 mA]

Connection diagrams

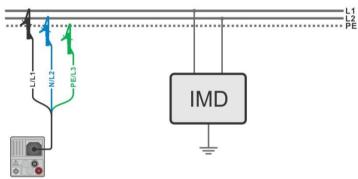


Figure 7.68: Measurement of highest First fault leakage current with 3-wire test lead

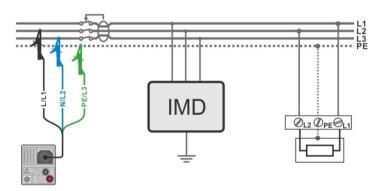


Figure 7.69: Measurement of First fault leakage current for RCD protected circuit with 3-wire test lead

Measurement procedure

- Enter the ISFL function.
- Set test parameters / limits.
- Connect test cable to the instrument.

- Connect test leads to the object under test, see Figure 7.68 and Figure 7.69.
- Start the measurement.
- Save results (optional).

Figure 7.70: Examples of First fault leakage current measurement result

lsc1	First fault leakage current at single fault between L1/PE
lsc2	First fault leakage current at single fault between L2/PE

7.21 IMD – Testing of insulation monitoring devices (MI 3152 only)

This function checks the alarm threshold of insulation monitor devices (IMD) by applying a changeable resistance between L1/PE and L2/PE terminals.

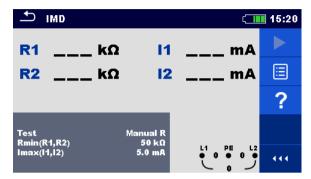


Figure 7.71: IMD test menu

Test parameters / limits

Test	Test mode [MANUAL R, MANUAL I, AUTO R, AUTO I]	
t step	Timer (AUTO R and AUTO I test modes) [1 s 99 s]	
Rmin(R1,R2)	Min. insulation resistance [Off, $5 \text{ k}\Omega \dots 640 \text{ k}\Omega$],	
lmax(l1,l2)	Max. fault current [Off, 0.1 mA 19.9 mA]	

Connection diagram

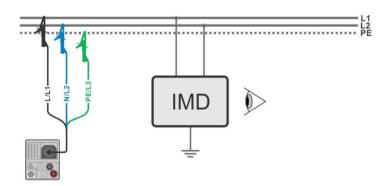
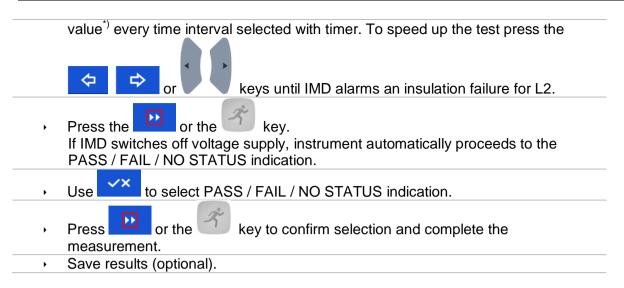


Figure 7.72: Connection with 3-wire test lead

Test procedure (MANUAL R, MANUAL I)

- Enter the IMD function.
- Set test parameter to MANUAL R or MANUAL I.
 Set other test parameters / limits.
- Connect test cable to the instrument.
- Connect test leads to the object under test, see *Figure 7.72*.
- Start the measurement.
- Use the or keys to change insulation resistance until IMD alarms an insulation failure for L1.
- Press or the key to change line terminal selection to L2. (If IMD switches off voltage supply, instrument automatically changes line terminal selection to L2 and proceeds with the test when supply voltage is detected.)
- b Use the or keys to change insulation resistance until IMD alarms an insulation failure for L2.
- Press the or the key.

 (If IMD switches off voltage supply, instrument automatically proceeds to the PASS / FAIL / NO STATUS indication.)
- Use to select PASS / FAIL / NO STATUS indication.
- Press or the key to confirm selection and complete the measurement.
- Save results (optional).


Test procedure (AUTO R, AUTO I)

- Enter the IMD function.
- Set test parameter to AUTO R or AUTO I.
- Set other test parameters / limits.
- Connect test cable to the instrument.
- Connect test leads to the object under test, see *Figure 7.72*.
- Start the measurement.

Insulation resistance between L1-PE is decreased automatically according to limit value^{*)} every time interval selected with timer. To speed up the test press the

- Press or the key to change line terminal selection to L2. (If IMD switches off voltage supply, instrument automatically changes line terminal selection to L2 and proceeds with the test when supply voltage is detected.)
- Insulation resistance between L2-PE is decreased automatically according to limit

When MANUAL R or AUTO R sub-function is selected, starting value of insulation resistance is determined by $R_{START} \cong 1.5 \times R_{LIMIT}$. When MANUAL I or AUTO I sub-function is selected, starting value of insulation resistance is determined by $R_{START} \cong 1.5 \times \frac{U_{L1-L2}}{I_{LIMIT}}$

Figure 7.73: Examples of IMD test result

Test results / sub-results

R1	Threshold insulation resistance between L1-PE
I 1	Calculated first fault leakage current for R1
R2	Threshold insulation resistance between L2-PE
12	Calculated first fault leakage current for R2

Calculated first fault leakage current at threshold insulation resistance is given as $I_{1(2)} = \frac{U_{L1-L2}}{R_{1(2)}}$, where U_{L1-L2} is line-line voltage. The calculated first fault current is the maximum current that would flow when insulation resistance decreases to the same value as the applied test resistance, and a first fault is assumed between opposite line and PE.

7.22 Rpe – PE conductor resistance

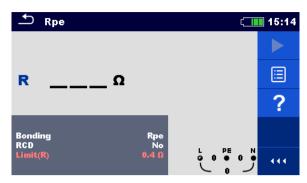


Figure 7.74: PE conductor resistance measurement menu

Measurement parameters / limits

Bonding	[Rpe,Local]
RCD	[Yes, No]
Limit(Rpe)	Max. resistance [Off, 0.1 Ω 20.0 Ω]

Connection diagram

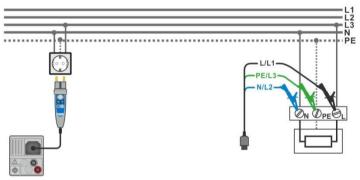
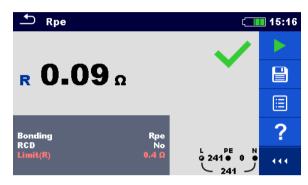



Figure 7.75: Connection of Plug commander and 3-wire test lead

Measurement procedure

- Enter the **Rpe** function.
- Set test parameters / limits.
- Connect test cable to the instrument.
- Connect test leads or Plug commander to the object under test, see *Figure 7.75*.
- > Start the measurement.
- Save results (optional).

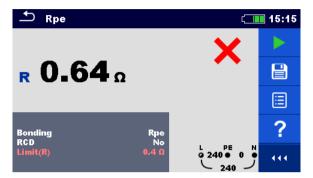


Figure 7.76: Examples of PE conductor resistance measurement result

Measurement results / sub-results

Rpe PE conductor resistance

7.23 Illumination

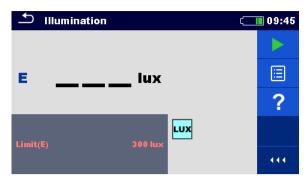


Figure 7.77: Illumination measurement menu

Measurement parameters / limits

Limit(E) Minimum illumination [Off, 0.1 lux ... 20 klux]

Probe positioning

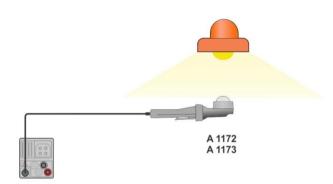


Figure 7.78: LUXmeter probe positioning

Measurement procedure

- Enter the Illumination function.
- Set test parameters / limits.
- Connect illumination sensor A 1172 or A 1173 to the instrument.
- Take the position of LUXmeter probe, see *Figure 7.78*.
 Make sure that LUXmeter probe is turned on.
- Start the continuous measurement.
- Stop the measurement.
- Save results (optional).

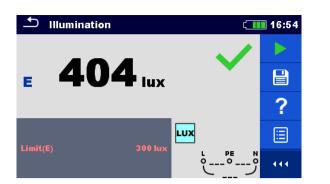


Figure 7.79: Examples of Illumination measurement result

Measurement results / sub-results

E Illumination

8 Auto tests

Auto tests perform automatic executing of pre-defined measurement sequences. The following Auto Tests are available:

- AUTO TT,
- AUTO TN (RCD),
- AUTO TN and
- AUTO IT (MI 3152 only).

Auto test can be selected in the main Auto Tests menu or from Memory organizer by touching

Figure 8.1: Auto Tests menu

Figure 8.2: Auto Test selection from Memory organizer

Use chapter **6 Single tests** as a reference on Auto test screen organization and as guidance how to set parameters and limits.

8.1 AUTO TT - Auto test sequence for TT earthing system

Tests / measurements implemented in AUTO TT sequence

Voltage	
Z line	
Voltage Drop	
Zs rcd	
RCD Uc	

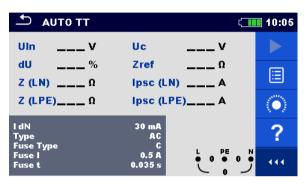


Figure 8.3: AUTO TT menu

Measurement parameters / limits

I dN	Rated RCD residual current sensitivity [10 mA, 30 mA, 100 mA, 300 mA, 500 mA, 1000 mA]	
Туре	RCD type [AC, A, F, B*, B+*]	
Selectivity	Characteristic [G, S]	
Fuse type	Selection of fuse type [gG, NV, B, C, D, K]	
Fuse I	Rated current of selected fuse	
Fuse t	Maximum breaking time of selected fuse	
Limit(dU)	Maximum voltage drop [3.0 % 9.0 %]	
Limit Uc(Uc)	Conventional touch voltage limit [25 V, 50 V]	
la(lpsc (LN), lpsc (LPE))	Minimum short circuit current for selected fuse	

See Appendix A for reference fuse data.

Connection diagram

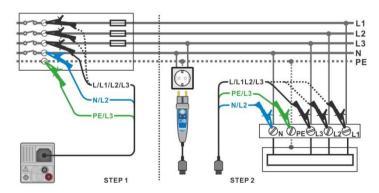
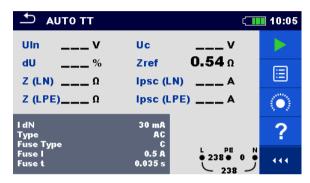



Figure 8.4: AUTO TT measurement

^{*} Model MI 3152 only.

Measurement procedure

- Enter the AUTO TT function.
 Set test parameters / limits.
- Measure the impedance Zref at origin (optional), see chapter
 7.13 Voltage Drop.
- Connect test cable to the instrument.
- Connect test leads or Plug commander to the object under test, see Figure 8.4.
- Start the Auto test.
- Save results (optional).



Figure 8.5: Examples of AUTO TT measurement results

Uln	n Voltage between phase and neutral conductors	
dU	Voltage drop	
Z (LN)	Line impedance	
Z (LPE)	Loop impedance	
Uc Contact voltage		
Zref Reference Line impedance		
lpsc (LN)	Prospective short-circuit current	
Ipsc (LPE)	sc (LPE) Prospective fault current	

8.2 AUTO TN (RCD) – Auto test sequence for TN earthing system with RCD

Tests / measurements implemented in AUTO TN (RCD) sequence

Voltage	
Z line	
Voltage Drop	
Zs rcd	
Rpe rcd	

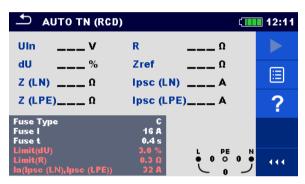


Figure 8.6: AUTO TN (RCD) menu

Measurement parameters / limits

Fuse type	Selection of fuse type [gG, NV, B, C, D, K]
Fuse I	Rated current of selected fuse
Fuse t	Maximum breaking time of selected fuse
Limit(dU)	Maximum voltage drop [3.0 % 9.0 %]
Limit (Rpe)	Max. resistance [Off, 0.1 Ω 20.0 Ω]
la(lpsc (LN), Minimum short circuit current for selected fuse	
Ipsc (LPE))	

See Appendix A for reference fuse data.

Connection diagram

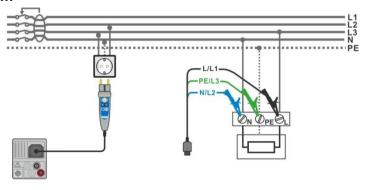
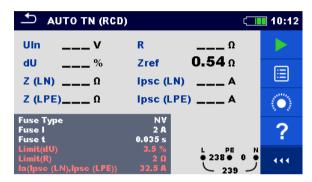



Figure 8.7: AUTO TN (RCD) measurement

Measurement procedure

- Enter the AUTO TN (RCD) function.Set test parameters / limits.
- Measure the impedance Zref at origin (optional), see chapter
 7.13 Voltage Drop.
- Connect test cable to the instrument.
- Connect test leads or Plug commander to the object under test, see Figure 8.7.
- Start the Auto test.
- Save results (optional).

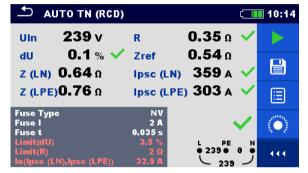


Figure 8.8: Examples of AUTO TN (RCD) measurement results

Uln	In Voltage between phase and neutral conductors	
dU	Voltage drop	
Z (LN)	Line impedance	
Z (LPE)	Loop impedance	
Rpe	PE conductor resistance	
Zref Reference Line impedance		
Ipsc (LN) Prospective short-circuit current		
Ipsc (LPE)	osc (LPE) Prospective fault current	

8.3 AUTO TN – Auto test sequence for TN earthing system without RCD

Tests / measurements implemented in AUTO TN sequence

Voltage	
Z line	
Voltage Drop	
Z loop	
Rpe	

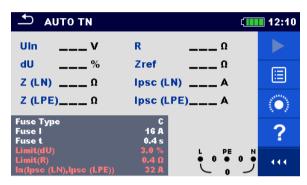


Figure 8.9: AUTO TN menu

Measurement parameters / limits

Fuse type	Selection of fuse type [gG, NV, B, C, D, K]
Fuse I	Rated current of selected fuse
Fuse t	Maximum breaking time of selected fuse
Limit(dU)	Maximum voltage drop [3.0 % 9.0 %]
Limit(Rpe)	Max. resistance [Off, 0.1 Ω 20.0 Ω]
la(lpsc (LN), Minimum short circuit current for selected fuse	
lpsc (LPE))	

See Appendix A for reference fuse data.

Connection diagram

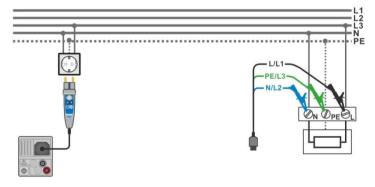


Figure 8.10: AUTO TN measurement

Measurement procedure

- Enter the AUTO TN function.
- Set test parameters / limits.
- Measure the impedance Zref at origin (optional), see chapter
 7.13 Voltage Drop.
- Connect test cable to the instrument.
- Connect test leads or Plug commander to the object under test, see Figure 8.10.
- Start the Auto test.
- Save results (optional).

Figure 8.11: Examples of AUTO TN measurement results

Uln	In Voltage between phase and neutral conductors	
dU	Voltage drop	
Z (LN)	Line impedance	
Z (LPE)	Loop impedance	
Rpe	PE conductor resistance	
Zref Reference Line impedance		
Ipsc (LN) Prospective short-circuit current		
Ipsc (LPE)	osc (LPE) Prospective fault current	

8.4 AUTO IT – Auto test sequence for IT earthing system (MI 3152 only)

Tests / measurements implemented in AUTO IT sequence

Voltage	
Z line	
Voltage Drop	
ISFL	
IMD	

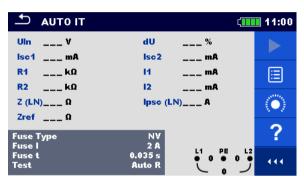


Figure 8.12: AUTO IT menu

Measurement parameters / limits

Test	Test mode [MANUAL R, MANUAL I, AUTO R, AUTO I]
t step	Timer (AUTO R and AUTO I test modes) [1 s 99 s]
Fuse type	Selection of fuse type [gG, NV, B, C, D, K]
Fuse I	Rated current of selected fuse
Fuse t Maximum breaking time of selected fuse	
Limit(dU)	Maximum voltage drop [3.0 % 9.0 %]
Rmin(R1,R2)	Min. insulation resistance [Off, 5 k Ω 640 k Ω],
lmax(l1,l2)	Max. fault current [Off, 0.1 mA 19.9 mA]
Imax(Isc1,Isc2)	Maximum first fault leakage current [Off, 3.0 mA 19.5 mA]
la(lpsc (LN)) Minimum short circuit current for selected fuse	

See Appendix A for reference fuse data.

Connection diagram

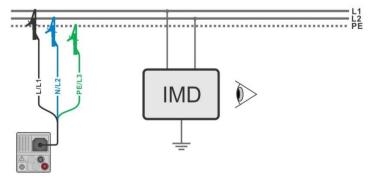
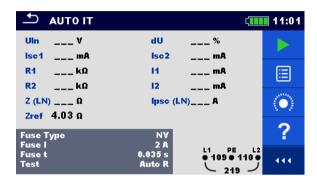



Figure 8.13: AUTO IT measurement

Measurement procedure

- Enter the AUTO IT function.Set test parameters / limits.
- Measure the impedance Zref at origin (optional), see chapter
 7.13 Voltage Drop.
- Connect test cable to the instrument.
- Connect test leads to the object under test, see *Figure 8.13*.
- Start the Auto test.
- Save results (optional).

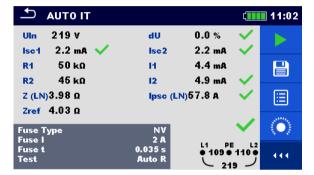


Figure 8.14: Examples of AUTO IT measurement results

Uln	n Voltage between phases L1 and L2	
dU	Voltage drop	
Isc1	First fault leakage current at single fault between L1/PE	
lsc2	First fault leakage current at single fault between L2/PE	
R1	Threshold insulation resistance between L1-PE	
R2	Threshold insulation resistance between L2-PE	
<u>I1</u>	Calculated first fault leakage current for R1	
12	Calculated first fault leakage current for R2	
Z (LN)	Line impedance	
Zref	Reference Line impedance	
lpsc (LN)	Prospective short-circuit current	

9 Communication

Tree structure and stored results from Memory Organizer can be transferred to a PC. A special communication program on the PC automatically identifies the instrument and enables data transfer between the instrument and the PC.

There are three communication interfaces available on the instrument: USB, RS 232 and Bluetooth.

9.1 USB and RS232 communication

The instrument automatically selects the communication mode according to detected interface. USB interface has priority.

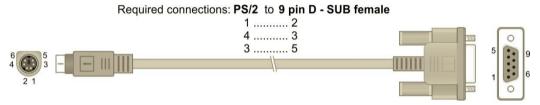


Figure 9.1: Interface connection for data transfer over PC COM port

How to establish an USB or RS-232 link:

- RS-232 communication: connect a PC COM port to the instrument PS/2 connector using the PS/2 RS232 serial communication cable;
- USB communication: connect a PC USB port to the instrument USB connector using the USB interface cable.
- Switch on the PC and the instrument.
- Run the *Metrel ES Manager* software.
- The PC and the instrument will automatically recognize each other.
- The instrument is prepared to communicate with the PC.

Metrel ES Manager is a PC software running on Windows Vista, Windows 7, Windows 8 and Windows 8.1.

9.2 Bluetooth communication

The internal Bluetooth module enables easy communication via Bluetooth with PC and Android devices.

How to configure a Bluetooth link between instrument and PC

- Switch On the instrument.
- On PC configure a Standard Serial Port to enable communication over Bluetooth link between instrument and PC. Usually no code for pairing the devices is needed.
- Run the Metrel ES Manager software.

- The PC and the instrument will automatically recognize each other.
- The instrument is prepared to communicate with the PC.

How to configure a Bluetooth link between instrument and Android device

- Switch On the instrument.
- Some Android applications automatically carry out the setup of a Bluetooth connection. It is preferred to use this option if it exists. This option is supported by Metrel's Android applications.
- If this option is not supported by the selected Android application then configure a Bluetooth link via Android device's Bluetooth configuration tool. Usually no code for pairing the devices is needed.
- The instrument and Android device are ready to communicate.

Notes

- Sometimes there will be a demand from the PC or Android device to enter the code. Enter code 'NNNN' to correctly configure the Bluetooth link.
- The name of correctly configured Bluetooth device must consist of the instrument type plus serial number, eg. *MI 3152-12240429I*. If the Bluetooth module got another name, the configuration must be repeated.
- In case of serious troubles with the Bluetooth communication it is possible to reinitialize the internal Bluetooth module. The initialization is carried out during the Initial settings procedure. In case of a successful initialization "INITIALIZING... OK!" is displayed at the end of the procedure. See chapter **4.6.5 Initial Settings**.

10 Upgrading the instrument

The instrument can be upgraded from a PC via the RS232 or USB communication port. This enables to keep the instrument up to date even if the standards or regulations change. The firmware upgrade requires internet access and can be carried out from the *Metrel ES Manager* software with a help of special upgrading software – *FlashMe* which will guide you through the upgrading procedure. For more information refer to Metrel ES Manager Help file.

11 Maintenance

Unauthorized persons are not allowed to open the EurotestXC instrument. There are no user replaceable components inside the instrument, except the battery and fuses under back cover.

11.1 Fuse replacement

There are three fuses under back cover of the EurotestXC instrument.

F1 M 0.315 A / 250 V, 20×5 mm

This fuse protects internal circuitry for continuity functions if test probes are connected to the mains supply voltage by mistake during measurement.

F2, F3 F 4 A / 500 V, 32×6.3 mm (breaking capacity: 50 kA)

General input protection fuses of test terminals L/L1 and N/L2.

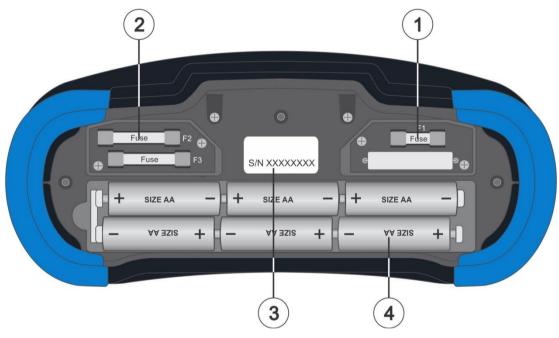


Figure 11.1: Fuses

Warnings:

- Disconnect all measuring accessory and switch off the instrument before opening battery / fuse compartment cover, hazardous voltage inside!
- Replace blown fuse with original type only, otherwise the instrument or accessory may be damaged and / or operator's safety impaired!

11.2 Cleaning

No special maintenance is required for the housing. To clean the surface of the instrument or accessory use a soft cloth slightly moistened with soapy water or alcohol. Then leave the instrument or accessory to dry totally before use.

Warnings:

- Do not use liquids based on petrol or hydrocarbons!
- Do not spill cleaning liquid over the instrument!

11.3 Periodic calibration

It is essential that the test instrument is regularly calibrated in order that the technical specification listed in this manual is guaranteed. We recommend an annual calibration. Only an authorized technical person can do the calibration. Please contact your dealer for further information.

11.4 Service

For repairs under warranty, or at any other time, please contact your distributor.

12 Technical specifications

12.1 R iso - Insulation resistance

Uiso: 50 V, 100 V and 250 V Riso – Insulation resistance

Measuring range according to EN 61557 is 0.15 M Ω ... 199.9 M Ω .

0 0			
Measuring range (M Ω)	Resolution (MΩ)	Accuracy	
0.00 19.99	0.01	±(5 % of reading + 3 digits)	
20.0 99.9	0.1	±(10 % of reading)	
100.0 199.9		±(20 % of reading)	

Uiso: 500 V and 1000 V Riso – Insulation resistance

Measuring range according to EN 61557 is 0.15 M Ω ... 999 M Ω .

Measuring range (M Ω)	Resolution (MΩ)	Accuracy	
0.00 19.99	0.01	±(5 % of reading + 3 digits)	
20.0 199.9	0.1	±(5 % of reading)	
200 999	1	±(10 % of reading)	

Uiso: 2500V (MI 3152H only) Riso – Insulation resistance

Measuring range (Ω)	Resolution (Ω)	Accuracy
0.00 M 19.99 M	0.01 M	\pm (5 % of reading + 3 digits)
20.0 M 199.9 M	0.1 M	±(5 % of reading)
200 M 999 M	1 M	±(10 % of reading)
1.00 G 19.99 G	0.01 G	±(10 % of reading)

Um - Voltage

Measuring range (V)	Resolution (V)	Accuracy
0 2700	1	\pm (3 % of reading + 3 digits)

Nominal voltages Uiso......50 V_{DC} , 100 V_{DC} , 250 V_{DC} , 500 V_{DC} , 1000 V_{DC} ,

2500 V_{DC} (MI 3152H only)

Short circuit currentmax. 3 mA

The number of possible tests> 700, with a fully charged battery

Auto discharge after test.

Specified accuracy is valid if 3-wire test lead is used while it is valid up to 100 M Ω if Tip commander is used.

Specified accuracy is valid up to 100 M Ω if relative humidity is > 85 %.

In case the instrument gets moistened, the results could be impaired. In such case, it is recommended to dry the instrument and accessories for at least 24 hours.

The error in operating conditions could be at most the error for reference conditions (specified in the manual for each function) ± 5 % of measured value.

12.2 Diagnostic test (MI 3152H only)

Uiso: 500V, 1000 V, 2500 V

DAR - Dielectric absorption ratio

Measuring range	Resolution	Accuracy
0.01 9.99	0.01	\pm (5 % of reading + 2 digits)
10.0 100.0	0.1	±(5 % of reading)

PI - Polarization index

Measuring range	Resolution	Accuracy
0.01 9.99	0.01	±(5 % of reading + 2 digits)
10.0 100.0	0.1	±(5 % of reading)

For **Riso**, **R60**, and **Um** sub-results technical specifications defined in chapter **12.1 R iso** – **Insulation resistance** apply.

12.3 R low – Resistance of earth connection and equipotential bonding

Measuring range according to EN 61557 is 0.16 Ω ... 1999 Ω .

R - Resistance

Measuring range (Ω)	Resolution (Ω)	Accuracy
0.00 19.99	0.01	±(3 % of reading + 3 digits)
20.0 199.9	0.1	±(5 % of reading)
200 1999	1	

R+, R - Resistance

Measuring range (Ω)	Resolution (Ω)	Accuracy
0.0 199.9	0.1	L/E 0/ of roading L E digita)
200 1999	1	±(5 % of reading + 5 digits)

Open-circuit voltage......6.5 VDC ... 18 VDC

Measuring current......min. 200 mA into load resistance of 2 Ω

Test lead compensationup to 5 Ω

The number of possible tests > 1400, with a fully charged battery

Automatic polarity reversal of the test voltage.

12.4 Continuity – Continuous resistance measurement with low current

R - Continuity resistance

Measuring range (Ω)	Resolution (Ω)	Accuracy
0.0 19.9	0.1	±(5 % of reading + 3 digits)
20 1999	1	

Short-circuit currentmax. 8.5 mA

Test lead compensationup to 5 Ω

12.5 RCD testing

General data

		I _{ΔN} × 1	/2		$I_{\Delta N} \times 1$			$I_{\Delta N} \times 2$			_{ΔN} × !	2		RCD	I_Δ
$I_{\Delta N}$ (mA)	AC	A, F	B, B+	AC	A, F	B, B+	AC	A, F	B, B+	AC	A, F	B, B+	AC	A, F	B, B+
10	5	3.5	5	10	20	20	20	40	40	50	100	100	✓	✓	✓
30	15	10.5	15	30	42	60	60	84	120	150	212	300	✓	✓	✓
100	50	35	50	100	141	200	200	282	400	500	707	1000	✓	✓	\checkmark
300	150	105	150	300	424	600	600	848	n.a.	1500	n.a.	n.a.	✓	✓	\checkmark
500	250	175	250	500	707	1000	1000	1410	n.a.	2500	n.a.	n.a.	✓	✓	✓
1000	500	350	500	1000	1410	n.a.	2000	n.a.	n.a.	n.a.	n.a.	n.a.	✓	✓	n.a.

n.a.not applicable

AC typesine wave test current

A, F types..... pulsed current

B, B+ typessmooth DC current (MI 3152 only)

12.5.1 RCD Uc – Contact voltage

Measuring range according to EN 61557 is 20.0 V ... 31.0 V for limit contact voltage 25 V Measuring range according to EN 61557 is 20.0 V ... 62.0 V for limit contact voltage 50 V

Uc - Contact voltage

Measuring range (V)	Resolution (V)	Accuracy
0.0 19.9	0.1	(-0 % / +15 %) of reading ± 10 digits
20.0 99.9	0.1	(-0 % / +15 %) of reading

The accuracy is valid if mains voltage is stabile during the measurement and PE terminal is free of interfering voltages. Specified accuracy is valid for complete operating range.

12.5.2 RCD t – Trip-out time

Complete measurement range corresponds to EN 61557 requirements.

Maximum measuring times set according to selected reference for RCD testing.

t △N -Trip-out time

Measuring range (ms)	Resolution (ms)	Accuracy
0.0 40.0	0.1	±1 ms
0.0 max. time*	0.1	±3 ms

^{*} For max. time see normative references in chapter **4.6.4.1 RCD standard**. This specification applies to max. time >40 ms.

 $5 \times I_{\Delta N}$ is not available for $I_{\Delta N}$ =1000 mA (RCD type AC) or $I_{\Delta N} \ge 300$ mA (RCD types A, F).

 $2 \times I_{\Delta N}$ is not available for $I_{\Delta N}$ =1000 mA (RCD types A, F).

Specified accuracy is valid for complete operating range.

12.5.3 RCD I – Trip-out current

Complete measurement range corresponds to EN 61557 requirements.

I∆ - Trip-out current

Measuring range	Resolution I _∆	Accuracy
$0.2 \times I_{\Delta N} \dots 1.1 \times I_{\Delta N}$ (AC type)	$0.05 \times I_{\Delta N}$	$\pm 0.1 imes I_{\Delta N}$
$0.2 \times I_{\Delta N} \dots 1.5 \times I_{\Delta N}$ (A type,	$0.05 \times I_{\Delta N}$	$\pm 0.1 imes I_{\Delta N}$
I _{ΔN} ≥30 mA)		
$0.2 \times I_{\Delta N} \dots 2.2 \times I_{\Delta N}$ (A type,	$0.05 imes I_{\Delta N}$	±0.1×I _{∆N}
$I_{\Delta N}$ <30 mA)		
0.2×I _{ΔN} 2.2×I _{ΔN} (B type)	$0.05 \times I_{\Delta N}$	$\pm 0.1 imes I_{\Delta N}$

t I∆ - Trip out-time

Measuring range (ms)	Resolution (ms)	Accuracy
0 300	1	±3 ms

Uc I∆ – Contact voltage

Measuring range (V)	Resolution (V)	Accuracy	
0.0 19.9	0.1	(-0 % / +15 %) of reading ± 10 digits	
20.0 99.9	0.1	(-0 % / +15 %) of reading	

The accuracy is valid if mains voltage is stabile during the measurement and PE terminal is free of interfering voltages. Specified accuracy is valid for complete operating range.

Trip-out measurement is not available for I_{AN}=1000 mA (RCD types B, B+).

12.6 Z loop – Fault loop impedance and prospective fault current

Z - Fault loop impedance

Measuring range according to EN 61557 is 0.25 Ω ... 9.99 k Ω .

Measuring range (Ω)	Resolution (Ω)	Accuracy	
0.00 9.99	0.01	L/E 0/ of roading L E digital	
10.0 99.9	0.1	\pm (5 % of reading + 5 digits)	
100 999	1	100/ of reading	
1.00 k 9.99 k	10	± 10 % of reading	

Ipsc – Prospective fault current

Measuring range (A)	Resolution (A)	Accuracy
0.00 9.99	0.01	
10.0 99.9	0.1	Consider accuracy of fault
100 999	1	Consider accuracy of fault loop resistance measurement
1.00 k 9.99 k	10	100p resistance measurement
10.0 k 23.0 k	100	

The accuracy is valid if mains voltage is stabile during the measurement.

Nominal voltage range......93 V ... 134 V (45 Hz ... 65 Hz)

185 V ... 266 V (45 Hz ... 65 Hz)

R, X_L values are indicative.

12.7 Zs rcd –Fault loop impedance and prospective fault current in system with RCD

Z – Fault loop impedance

Measuring range according to EN 61557 is $0.46 \Omega \dots 9.99 k\Omega$.

Measuring range (Ω)	Resolution (Ω)	Accuracy
0.00 9.99	0.01	L/E 0/ of reading 1 10 digital
10.0 99.9	0.1	\pm (5 % of reading + 10 digits)
100 999	1	10.0/ of vooding
1.00 k 9.99 k	10	± 10 % of reading

Accuracy may be impaired in case of heavy noise on mains voltage.

Ipsc – Prospective fault current

Measuring range (A)	Resolution (A)	Accuracy
0.00 9.99	0.01	
10.0 99.9	0.1	Consider accuracy of fault
100 999	1	Consider accuracy of fault loop resistance measurement
1.00 k 9.99 k	10	100p resistance measurement
10.0 k 23.0 k	100	

185 V ... 266 V (45 Hz ... 65 Hz)

No trip out of RCD. R, X_L values are indicative.

12.8 Z line – Line impedance and prospective short-circuit current

Z - Line impedance

Measuring range according to EN 61557 is 0.25 Ω ... 9.99 k Ω .

Measuring range (Ω)	Resolution (Ω)	Accuracy	
0.00 9.99	0.01	L/E 0/ of roading L E digita)	
10.0 99.9	0.1	\pm (5 % of reading + 5 digits)	
100 999	1	1.40.0/ of roading	
1.00 k 9.99 k	10	± 10 % of reading	

lpsc - prospective short-circuit current

Measuring range (A)	Resolution (A)	Accuracy
0.00 0.99	0.01	
1.0 99.9	0.1	Consider accuracy of line
100 999	1	Consider accuracy of line resistance measurement
1.00 k 99.99 k	10	resistance measurement
100 k 199 k	1000	

Test current (at 230 V)......6.5 A (10 ms)

Nominal voltage range......93 V ... 134 V (45 Hz ... 65 Hz)

185 V ... 266 V (45 Hz ... 65 Hz)

321 V ... 485 V (45 Hz ... 65 Hz)

R, X_L values are indicative.

12.9 Voltage Drop

dU - Voltage drop

Measuring range (%)	Resolution (%)	Accuracy
0.0 00.0	0.1	Consider accuracy of line
0.0 99.9	0.1	impedance measurement(s)*

185 V ... 266 V (45 Hz ... 65 Hz)

321 V ... 485 V (45 Hz ... 65 Hz)

^{*}See chapter 7.13 Voltage Drop for more information about calculation of voltage drop result.

12.10 Rpe - PE conductor resistance

RCD: No

R - PE conductor resistance

Measuring range (Ω)	Resolution (Ω)	Accuracy
0.00 19.99	0.01	L/E 0/ of roading L E digital
20.0 99.9	0.1	±(5 % of reading + 5 digits)
100.0 199.9	0.1	100/ of roading
200 1999	1	± 10 % of reading

Measuring current......min. 200 mA into PE resistance of 2 Ω

RCD: Yes, no trip out of RCD R – PE conductor resistance

Measuring range (Ω)	Resolution (Ω)	Accuracy
0.00 19.99	0.01	L/E 0/ of roading L 10 digita)
20.0 99.9	0.1	±(5 % of reading + 10 digits)
100.0 199.9	0.1	100/ of roading
200 1999	1	± 10 % of reading

Accuracy may be impaired in case of heavy noise on mains voltage.

Measuring current...... < 15 mA

12.11 Earth – Earth resistance (3-wire measurement)

Re - Earth resistance

Measuring range according to EN61557-5 is 2.00 Ω ... 1999 Ω .

Measuring range (Ω)	Resolution (Ω)	Accuracy
0.00 19.99	0.01	
20.0 199.9	0.1	\pm (5 % of reading + 5 digits)
200 9999	1	

Max. auxiliary earth electrode resistance R_C 100× R_E or 50 $k\Omega$ (whichever is lower) Max. probe resistance R_P 100× R_E or 50 $k\Omega$ (whichever is lower)

Additional probe resistance error at R_{Cmax} or R_{Pmax} .±(10 % of reading + 10 digits)

Additional error at 3 V voltage noise (50 Hz)±(5 % of reading + 10 digits) Open circuit voltage<30 VAC

Noise voltage indication threshold1 V (< 50 Ω , worst case)

Automatic measurement of auxiliary electrode resistance and probe resistance. Automatic measurement of voltage noise.

12.12 Earth 2 clamp – Contactless earthling resistance measurement (with two current clamps)

Re - Earth resistance

Measuring range (Ω)	Resolution (Ω)	Accuracy*)
0.00 19.99	0.01	\pm (10 % of reading + 10 digits)
20.0 30.0	0.1	±(20 % of reading)
30.1 39.9	0.1	±(30 % of reading)

Distance between current clamps > 30 cm.

Additional error at 3 V voltage noise (50 Hz)±10 % of reading

Test voltage frequency125 Hz

Noise current indicationyes

Low clamp current indication.....yes

Additional clamp error has to be considered.

12.13 Ro - Specific earth resistance

ρ - Specific earth resistance

Measuring range (Ωm)	Resolution (Ωm)	Accuracy
0.0 99.9	0.1	
100 999	1	
1.00 k 9.99 k	0.01 k	See accuracy note
10.0 k 99.9 k	0.1 k	
100 k 9999 k	1 k	

 ρ – Specific earth resistance

Measuring range (Ωft)	Resolution (Ωft)	Accuracy
0.0 99.9	0.1	
100 999	1	
1.00 k 9.99 k	0.01 k	See accuracy note
10.0 k 99.9 k	0.1 k	
100 k 9999 k	1 k	

Principle:

 ρ = 2· π ·d·Re,

where Re is a measured resistance in 4-wire method and d is distance between the probes.

Accuracy note:

Accuracy of the specific earth resistance result depends on measured earth resistance Re as follows:

Re - Earth resistance

Measuring range (Ω)	Accuracy
1.00 1999	±5 % of measured value
2000 19.99 k	±10 % of measured value
>20 k	±20 % of measured value

Additional error:

See Earth resistance three-wire method.

12.14 Voltage, frequency, and phase rotation

12.14.1 Phase rotation

12.14.2 Voltage

Measuring range (V)	Resolution (V)	Accuracy
0 550	1	±(2 % of reading + 2 digits)

Result typeTrue r.m.s. (TRMS)
Nominal frequency range0 Hz, 14 Hz ... 500 Hz

12.14.3 Frequency

Measuring range (Hz)	Resolution (Hz)	Accuracy
0.00 9.99	0.01	1/0 2 0/ of reading 1 1 digit)
10.0 499.9	0.1	\pm (0.2 % of reading + 1 digit)

Nominal voltage range......20 V ... 550 V

12.14.4 Online terminal voltage monitor

Measuring range (V)	Resolution (V)	Accuracy
10 550	1	±(2 % of reading + 2 digits)

12.15 Currents

Instrument

Maximum voltage on C1 measuring input...... 3 V

Nominal frequency...... 0 Hz, 40 Hz ... 500 Hz

Ch1 clamp type: A1018

Range: 20 A I1 - Current

Measuring range (A)	Resolution (A)	Accuracy*
0.0 m 99.9 m	0.1 m	\pm (5 % of reading + 5 digits)
100 m 999 m	1 m	\pm (3 % of reading + 3 digits)
1.00 19.99	0.01	\pm (3 % of reading)

Ch1 clamp type: A1019

Range: 20 A I1 - Current

ĺ	Measuring range (A)	Resolution (A)	Accuracy*
	0.0 m 99.9 m	0.1 m	indicative
	100 m 999 m	1 m	±(5 % of reading)
	1.00 19.99	0.01	±(3 % of reading)

Ch1 clamp type: A1391

Range: 40 A I1 – Current

Measuring range (A)	Resolution (A)	Accuracy*
0.00 1.99	0.01	\pm (3 % of reading + 3 digits)
2.00 19.99	0.01	\pm (3 % of reading)
20.0 39.9	0.1	±(3 % of reading)

Ch1 clamp type: A1391

Range: 300 A I1 – Current

Measuring range (A)	Resolution (A)	Accuracy*
0.00 19.99	0.01	indicative
20.0 39.9	0.1	liluicative
40.0 299.9	0.1	\pm (3 % of reading + 5 digits)

^{*} Accuracy at operating conditions for instrument and current clamp is given.

12.16 Power

Measurement characteristics

Function symbols	Class according to IEC 61557-12	Measuring range
P – Active power	2.5	5 % 100 % I _{Nom} *)
S – Apparent power	2.5	5 % 100 % I _{Nom} *)
Q – Reactive power	2.5	5 % 100 % I _{Nom} *)
PF – Power factor	1	- 1 1
THDu	2.5	0 % 20 % U _{Nom}

^{*)} I_{Nom} depends on selected current clamp type and selected range as follows:

A 1018:[20 A] A1019: [20 A]

A 1391: [40 A, 300 A]

Function	Measuring range	
Power (P, S, Q)	0.00 W (VA, Var) 99.9 kW (kVA, kVar)	
Power factor	-1.00 1.00	
Voltage THD	0.1 % 99.9 %	

Error of external voltage and current transducers is not considered in this specification.

12.17 Harmonics

Measurement characteristics

Function symbols	Class according to IEC 61557-12	Measuring range
Uh	2.5	0 % 20 % U _{Nom}
THDu	2.5	0 % 20 % U _{Nom}
lh	2.5	0 % 100 % I _{Nom} *)
THDi	2.5	0 % 100 % I _{Nom} *)

^{*)} I_{Nom} depends on selected current clamp type and selected range as follows:

A 1018:[20 A] A1019: [20 A]

A 1391: [40 A, 300 A]

Function	Measuring range
Voltage harmonics	0.1 V 500 V
Voltage THD	0.1 % 99.9 %
Current harmonics and Current THD	0.00 A 199.9 A

Error of external voltage and current transducers is not considered in this specification.

12.18 ISFL – First fault leakage current (MI 3152 only)

Isc1, Isc2 - First fault leakage current

Measuring range (mA)	Resolution (mA)	Accuracy
0.0 19.9	0.1	±(5 % of reading + 3 digits)

12.19 IMD (MI 3152 only)

R1, R2 - Threshold insulation resistance

R (kΩ)	Resolution (kΩ)	Notes
5 640	5	up to 128 steps

11, I2 - First fault leakage current at threshold insulation resistance

 ,		
I (mA)	Resolution (mA)	Note
0.0 19.9	0.1	calculated value*)

^{*)}See chapter **7.21 IMD – Testing of insulation monitoring devices (MI 3152 only)** for more information about calculation of first fault leakage current at threshold insulation resistance.

12.20 Illumination

Illumination (LUXmeter sensor, type B)

Specified accuracy is valid for complete operating range.

ı	Measuring range (lux)	Resolution (lux)	Accuracy
	0.01 19.99	0.01	\pm (5 % of reading + 2 digits)
Ī	20.0 199.9	0.1	
ſ	200 1999	1	±(5 % of reading)
ſ	2.00 19.99 k	10	

 $\label{eq:continuous_silicon} \begin{tabular}{lll} Measurement principle & silicon photodiode with $V(\lambda)$ filter Spectral response error & < 3.8 % according to CIE curve Cosine error & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ Overall accuracy & matched to DIN 5032 class B standard $\pm 85^{\circ}$ according to CIE curve & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ Overall accuracy & matched to DIN 5032 class B standard $\pm 85^{\circ}$ according to CIE curve & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ Overall accuracy & matched to DIN 5032 class B standard $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident angle of $\pm 85^{\circ}$ & < 2.5 % up to an incident an$

Illumination (LUXmeter sensor, type C)

Specified accuracy is valid for complete operating range.

Measuring range (lux)	Resolution (lux)	Accuracy
0.01 19.99	0.01	\pm (10 % of reading + 3 digits)
20.0 199.9	0.1	
200 1999	1	±(10 % of reading)
2.00 19.99 k	10	,

Measurement principlesilicon photodiode Cosine error< 2.5 % up to an incident angle of \pm 85 Overall accuracymatched to DIN 5032 class C standard

12.21 General data

Operationtypical 9 h

Charger socket input voltage......12 V ± 10 % Charger socket input current 1000 mA max. Battery charging current125 mA (normal charging mode) 725 mA (fast charging mode) Measuring category600 V CAT III 300 V CAT IV Protection classificationdouble insulation Pollution degree......2 Protection degreeIP 40 with touch screen Weight......1.3 kg, without battery cells Reference conditions

Power supply6 x 1.2 V Ni-MH battery cells, size AA

Reference temperature range10 °C ... 30 °C Reference humidity range40 %RH ... 70 %RH

Operation conditions

Working temperature range......0 °C ... 40 °C Maximum relative humidity95 %RH (0 °C ... 40 °C), non-condensing

Storage conditions

Temperature range.....-10 °C ... +70 °C Maximum relative humidity......90 %RH (-10 °C ... +40 °C) 80 %RH (40 °C ... 60 °C)

Communication ports, memory

RS 232	115200 bits/s, 8N1 serial protocol
USB	USB 2.0 Hi speed interface
	with USB type B receptacle connector
Data storage capacity	8 GB internal memory
Bluetooth module	Class 2

The error in operating conditions could be at most the error for reference conditions (specified in the manual for each function) +1 % of measured value + 1 digit, unless otherwise specified in the manual for particular function.

Appendix A – Fuse table – IPSC

Fuse type NV

Rated		Disc	connection time	e [s]	
current	35m	0.1	0.2	0.4	5
(A)		Min. prospect	tive short- circu	iit current (A)	
2	32.5	22.3	18.7	15.9	9.1
4	65.6	46.4	38.8	31.9	18.7
6	102.8	70	56.5	46.4	26.7
10	165.8	115.3	96.5	80.7	46.4
16	206.9	150.8	126.1	107.4	66.3
20	276.8	204.2	170.8	145.5	86.7
25	361.3	257.5	215.4	180.2	109.3
35	618.1	453.2	374	308.7	169.5
50	919.2	640	545	464.2	266.9
63	1217.2	821.7	663.3	545	319.1
80	1567.2	1133.1	964.9	836.5	447.9
100	2075.3	1429	1195.4	1018	585.4
125	2826.3	2006	1708.3	1454.8	765.1
160	3538.2	2485.1	2042.1	1678.1	947.9
200	4555.5	3488.5	2970.8	2529.9	1354.5
250	6032.4	4399.6	3615.3	2918.2	1590.6
315	7766.8	6066.6	4985.1	4096.4	2272.9
400	10577.7	7929.1	6632.9	5450.5	2766.1
500	13619	10933.5	8825.4	7515.7	3952.7
630	19619.3	14037.4	11534.9	9310.9	4985.1
710	19712.3	17766.9	14341.3	11996.9	6423.2
800	25260.3	20059.8	16192.1	13545.1	7252.1
1000	34402.1	23555.5	19356.3	16192.1	9146.2
1250	45555.1	36152.6	29182.1	24411.6	13070.1

Fuse type gG

Rated	Disconnection time [s]				
current	35m	0.1	0.2	0.4	5
(A)		Min. prospec	tive short- circu	iit current (A)	
2	32.5	22.3	18.7	15.9	9.1
4	65.6	46.4	38.8	31.9	18.7
6	102.8	70	56.5	46.4	26.7
10	165.8	115.3	96.5	80.7	46.4
13	193.1	144.8	117.9	100	56.2
16	206.9	150.8	126.1	107.4	66.3
20	276.8	204.2	170.8	145.5	86.7
25	361.3	257.5	215.4	180.2	109.3
32	539.1	361.5	307.9	271.7	159.1
35	618.1	453.2	374	308.7	169.5
40	694.2	464.2	381.4	319.1	190.1
50	919.2	640	545	464.2	266.9
63	1217.2	821.7	663.3	545	319.1
80	1567.2	1133.1	964.9	836.5	447.9
100	2075.3	1429	1195.4	1018	585.4

Fuse type B

Rated	Disconnection time [s]				
current	35m	0.1	0.2	0.4	5
(A)		Min. prospec	tive short- circu	uit current (A)	
6	30	30	30	30	30
10	50	50	50	50	50
13	65	65	65	65	65
15	75	75	75	75	75
16	80	80	80	80	80
20	100	100	100	100	100
25	125	125	125	125	125
32	160	160	160	160	160
40	200	200	200	200	200
50	250	250	250	250	250
63	315	315	315	315	315

Fuse type C

Rated	Disconnection time [s]				
current	35m	0.1	0.2	0.4	5
(A)		Min. prospec	tive short- circu	uit current (A)	
0.5	5	5	5	5	2.7
1	10	10	10	10	5.4
1.6	16	16	16	16	8.6
2	20	20	20	20	10.8
4	40	40	40	40	21.6
6	60	60	60	60	32.4
10	100	100	100	100	54
13	130	130	130	130	70.2
15	150	150	150	150	83
16	160	160	160	160	86.4
20	200	200	200	200	108
25	250	250	250	250	135
32	320	320	320	320	172.8
40	400	400	400	400	216
50	500	500	500	500	270
63	630	630	630	630	340.2

Fuse type D

Rated		Disconnection time [s]			
current	35m	0.1	0.2	0.4	5
(A)		Min. prospec	tive short- circu	uit current (A)	
0.5	10	10	10	10	2.7
1	20	20	20	20	5.4
1.6	32	32	32	32	8.6
2	40	40	40	40	10.8
4	80	80	80	80	21.6
6	120	120	120	120	32.4
10	200	200	200	200	54
13	260	260	260	260	70.2
15	300	300	300	300	81
16	320	320	320	320	86.4
20	400	400	400	400	108
25	500	500	500	500	135
32	640	640	640	640	172.8

Fuse type K

Rated		Disc	connection time	[s]	
current	35m	0.1	0.2	0.4	
(A)		Min. prospect	tive short- circu	it current (A)	
0.5	7.5	7.5	7.5	7.5	
1	15	15	15	15	
1.6	24	24	24	24	
2	30	30	30	30	
4	60	60	60	60	
6	90	90	90	90	
10	150	150	150	150	
13	195	195	195	195	
15	225	225	225	225	
16	240	240	240	240	
20	300	300	300	300	
25	375	375	375	375	
32	480	480	480	480	

Appendix B – Profile Notes

Instrument supports working with multiple Profiles. This appendix contains collection of minor modifications related to particular country requirements. Some of the modifications mean modified listed function characteristics related to main chapters and others are additional functions. Some minor modifications are related also to different requirements of the same market that are covered by various suppliers.

B.1 Profile Austria (ALAJ)

Testing special delayed G type RCD supported.

Modifications in chapter 7.6 Testing RCDs

Special delayed G type RCD selection added in the **Selectivity** parameter in **Test Parameters / Limits** section as follows:

Selectivity Characteristic [--, S, G]

Time limits are the same as for general type RCD and contact voltage is calculated the same as for general type RCD.

Selective (time delayed) RCDs and RCDs with (G) - time delayed characteristic demonstrate delayed response characteristics. They contain residual current integrating mechanism for generation of delayed trip out. However, contact voltage pre-test in the measuring procedure also influences the RCD and it takes a period to recover into idle state. Time delay of 30 s is inserted before performing trip-out test to recover S type RCD after pre-tests and time delay of 5 s is inserted for the same purpose for G type RCD.

Table 7.1: Relationship between Uc and I_{AN} changed as follows:

RCI	O type	Contact voltage Uc proportional to	Rated I _{∆N}	Notes	
AC	: G	1.05×I _{∆N}	any		
AC	S	2×1.05×I _{ΔN}			
A, F	! G	1.4×1.05×I _{∆N}	≥ 30 mA	All models	
A, F	S	2×1.4×1.05×I _{ΔN}			
A, F	- G	2×1.05×I _{∆N}	< 30 mA		
A, F	S	2×2×1.05×I _{ΔN}			
B, B+	-	2×1.05×I _{ΔN}	any	Model MI 3152	
B, B+	S	2×2×1.05×I _{ΔN}		only	

Technical specifications unchanged.

B.2 Profile Finland (profile code ALAC)

Modification of Appendix A - Fuse base table changed as follows:

Modified Fuse type NV

Rated		Disc	connection time	e [s]		
current	35m	0.1	0.2	0.4	5	
(A)	Min. prospective short- circuit current (A)					
2	40.6	27.9	23.4	19.9	11.4	
4	82	58	48.5	39.9	23.4	
6	128.5	87.5	70.6	58	33.4	
10	207.3	144.1	120.6	100.9	58	
16	258.6	188.5	157.6	134.3	82.9	
20	346	255.3	213.5	181.9	108.4	
25	451.6	321.9	269.3	225.3	136.6	
35	772.6	566.5	467.5	385.9	211.9	
50	1150	800	681.3	580.3	333.6	
63	1520	1030	829.1	681.3	398.9	
80	1960	1420	1210	1050	559.9	
100	2590	1790	1490	1270	731.8	
125	3530	2510	2140	1820	956.4	
160	4420	3110	2550	2100	1180	
200	5690	4360	3710	3160	1690	
250	7540	5500	4520	3650	1990	
315	9710	7580	6230	5120	2840	
400	13220	9910	8290	6810	3460	
500	17020	13670	11030	9390	4940	
630	24520	17550	14420	11640	6230	
710	24640	22210	17930	15000	8030	
800	31580	25070	20240	16930	9070	
1000	43000	29440	24200	20240	11430	
1250	56940	45190	36480	30510	16340	

Modified Fuse type gG

Rated		Disc	connection time	e [s]	
current	35m	0.1	0.2	0.4	5
(A)		Min. prospec	tive short- circu	it current (A)	
2	40.6	27.9	23.4	19.9	11.4
4	82	58	48.5	39.9	23.4
6	128.5	87.5	70.6	58	33.4
10	207.3	144.1	120.6	100.9	58
13	241.4	181	147.4	125	70.3
16	258.6	188.5	157.6	134.3	82.9
20	346	255.3	213.5	181.9	108.4
25	451.6	321.9	269.3	225.3	136.6
32	673.9	451.9	384.9	339.6	198.9
35	772.6	566.5	467.5	385.9	211.9
40	867.8	580.3	476.8	398.9	237.6
50	1150	800	681.3	580.3	333.6
63	1520	1030	829.1	681.3	398.9
80	1960	1420	1210	1050	559.9
100	2590	1790	1490	1270	731.8

Modified Fuse type B

Rated		Disconnection time [s]				
current	35m	0.1	0.2	0.4	5	
(A)		Min. prospec	tive short- circu	uit current (A)		
0.5	6.3	6.3	6.3	6.3	4.4	
1	12.5	12.5	12.5	12.5	8.8	
1.6	20	20	20	20	14	
2	25	25	25	25	17.5	
4	50	50	50	50	35	
6	37.5	37.5	37.5	37.5	37.5	
10	62.5	62.5	62.5	62.5	62.5	
13	81.3	81.3	81.3	81.3	81.3	
15	93.8	93.8	93.8	93.8	93.8	
16	100	100	100	100	100	
20	125	125	125	125	125	
25	156.3	156.3	156.3	156.3	156.3	
32	200	200	200	200	200	
40	250	250	250	250	250	
50	312.5	312.5	312.5	312.5	312.5	
63	393.8	393.8	393.8	393.8	393.8	

Modified Fuse type C

Rated	Disconnection time [s]				
current	35m	0.1	0.2	0.4	5
(A)		Min. prospec	tive short- circu	uit current (A)	
0.5	6.3	6.3	6.3	6.3	4.4
1	12.5	12.5	12.5	12.5	8.8
1.6	20	20	20	20	14
2	25	25	25	25	17.5
4	50	50	50	50	35
6	75	75	75	75	52.5
10	125	125	125	125	87.5
13	162.5	162.5	162.5	162.5	113.8
15	187.5	187.5	187.5	187.5	131.3
16	200	200	200	200	140
20	250	250	250	250	175
25	312.5	312.5	312.5	312.5	218.8
32	400	400	400	400	280
40	500	500	500	500	350
50	625	625	625	625	437.5
63	787.5	787.5	787.5	787.5	551.3

Modified Fuse type D

Rated		Disc	connection time	e [s]			
current	35m	0.1	0.2	0.4	5		
(A)		Min. prospective short- circuit current (A)					
0.5	12.5	12.5	12.5	12.5	4.4		
1	25	25	25	25	8.8		
1.6	40	40	40	40	14		
2	50	50	50	50	17.5		
4	100	100	100	100	35		
6	150	150	150	150	42.5		
10	250	250	250	250	87.5		
13	325	325	325	325	113.8		
15	375	375	375	375	131.3		
16	400	400	400	400	140		
20	500	500	500	500	175		
25	625	625	625	625	218.8		
32	800	800	800	800	280		

Modified Fuse type K

Rated		Disc	connection time	[s]		
current	35m	0.1	0.2	0.4		
(A)		Min. prospective short- circuit current (A)				
0.5	9.4	9.4	9.4	9.4		
1	18.8	18.8	18.8	18.8		
1.6	30	30	30	30		
2	37.5	37.5	37.5	37.5		
4	75	75	75	75		
6	112.5	112.5	112.5	112.5		
10	187.5	187.5	187.5	187.5		
13	243.8	243.8	243.8	243.8		
15	281.3	281.3	281.3	281.3		
16	300	300	300	300		
20	375	375	375	375		
25	468.8	468.8	468.8	468.8		
32	600	600	600	600		

B.3 Profile Hungary (profile code ALAD)

Fuse type gR added to the fuse tables.

Fuse type gR

Rated	Disconnection time [s]				
current	35m	0.1	0.2	0.4	5
(A)	Min. prospective short- circuit current (A)				
2	31.4	14	10	8	5
4	62.8	28	20	16	10
6	94.2	42	30	24	15
10	157	70	50	40	25
13	204	91	65	52	32.5
16	251	112	80	64	40
20	314	140	100	80	50
25	393	175	125	100	62.5
32	502	224	160	128	80
35	550	245	175	140	87.5
40	628	280	200	160	100
50	785	350	250	200	125
63	989	441	315	252	157.5
80	1256	560	400	320	200
100	1570	700	500	400	250
125	1963	875	625	500	313
160	2510	1120	800	640	400
200	3140	1400	1000	800	500
250	3930	1750	1250	1000	625
315	4950	2210	1575	1260	788
400	6280	2800	2000	1600	1000
500	7850	3500	2500	2000	1250
630	9890	4410	3150	2520	1575
710	11150	4970	3550	2840	1775
800	12560	5600	4000	3200	2000
1000	15700	7000	5000	4000	2500
1250	19630	8750	6250	5000	3130

New Single test function Visual Test added.

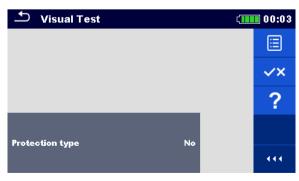


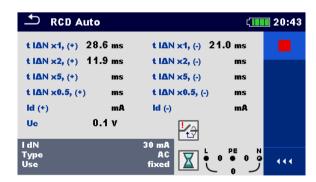
Figure 12.1: Visual Test menu

Measurement parameters / limits

Protection type [No, Automatic disconnection, Class II, Electrical separation, SELV,PELV]

Measurement procedure

- Enter the Visual Test function.
- Set test parameters / limits.
- Perform the visual inspection on tested object.
- Use to select PASS / FAIL / NO STATUS indication.
- Save results (optional).


Figure 12.2: Examples of Visual Test result

Modifications in chapter 7.7 RCD Auto - RCD Auto test

Added tests with multiplication factor 2.

Modification of RCD Auto test procedure

R	RCD Auto test inserted steps Notes		
•	Re-activate RCD.		
	Test with $2 \times I_{\Delta N}$, (+) positive polarity (new step 3).	RCD should trip-out	
•	Re-activate RCD.		
	Test with $2 \times I_{\Delta N}$, (-) negative polarity (new step 4).	RCD should trip-out	

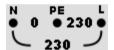
RCD Auto 20:45 t IAN x1, (+) 28.6 ms t IAN x1, (-) 21.0 ms t IΔN x2, (+) 11.9 ms t IΔN x2, (-) 16.9 ms t IΔN x5, (-) t IΔN x5, (+) ms t IΔN x0.5, (+) t IΔN x0.5, (-) ms ms ld (+) mA ld (-) mA 0.3 V Uc I dN

Inserted new Step 3

Inserted new Step 4

Figure 7.27: Individual steps in RCD Auto test - Inserted 2 new steps

Test results / sub-results


t I∆N x1 (+)	Step 1 trip-out time ($I_{\Delta}=I_{\Delta N}$, (+) positive polarity)
t I∆N x1 (-)	Step 2 trip-out time ($I_{\Delta}=I_{\Delta N}$, (-) negative polarity)
t I∆N x2 (+)	Step 3 trip-out time ($I_{\Delta}=2\times I_{\Delta N}$, (+) positive polarity)
t I∆N x2 (-)	Step 4 trip-out time ($I_{\Delta}=2\times I_{\Delta N}$, (-) negative polarity)
t I∆N x5 (+)	Step 5 trip-out time ($I_{\Delta}=5\times I_{\Delta N}$, (+) positive polarity)
t I∆N x5 (-)	Step 6 trip-out time ($I_{\Delta}=5\times I_{\Delta N}$, (-) negative polarity)
t I∆N x0.5 (+)	Step 7 trip-out time ($I_{\Delta}=\frac{1}{2}\times I_{\Delta N}$, (+) positive polarity)
t I∆N x0.5 (-)	Step 8 trip-out time ($I_{\Delta}=\frac{1}{2}\times I_{\Delta N}$, (-) negative polarity)
ld (+)	Step 9 trip-out current ((+) positive polarity)
ld (-)	Step 10 trip-out current ((-) negative polarity)
Uc	Contact voltage for rated $I_{\Delta N}$

B.4 Profile Switzerland (profile code ALAI)

Modifications in Chapter 4.4.1 Terminal voltage monitor

In the Terminal voltage monitor the positions of L and N indications are opposite to standard version.

Voltage monitor example:

Online voltages are displayed together with test terminal indication. All three test terminals are used for selected measurement.

B.5 Profile UK (profile code ALAB)

For modifications and UK fuse tables refer to separate UK Instruction manual.

B.6 Profile AUS/NZ (profile code ALAE)

For modifications and AUS/NZ fuse tables refer to separate AUS/NZ Instruction manual.

Appendix C – Commanders (A 1314, A 1401)

C.1 Marnings related to safety

Measuring category of commanders

Plug commander A 1314.....300 V CAT II

Tip commander A 1401

- (cap off, 18 mm tip)1000 V CAT II / 600 V CAT II / 300 V CAT II (cap on, 4 mm tip)1000 V CAT II / 600 V CAT III / 300 V CAT IV
 - Measuring category of commanders can be lower than protection category of the instrument.
 - If dangerous voltage is detected on the tested PE terminal, immediately stop all measurements, find and remove the fault!
 - When replacing battery cells or before opening the battery compartment cover, disconnect the measuring accessory from the instrument and installation.
 - Service, repairs or adjustment of instruments and accessories is only allowed to be carried out by competent authorized personnel!

C.2 Battery

The commander uses two AAA size alkaline or rechargeable Ni-MH battery cells. Nominal operating time is at least 40 h and is declared for cells with nominal capacity of 850 mAh.

Notes:

- If the commander is not used for a long period of time, remove all batteries from the battery compartment.
- Alkaline or rechargeable Ni-MH batteries (size AAA) can be used. Metrel recommends only using rechargeable batteries with a capacity of 800 mAh or above.
- Ensure that the battery cells are inserted correctly otherwise the commander will not operate and the batteries could be discharged.

C.3 Description of commanders

Figure D.3: Front side Tip commander (A 1401)



Figure D.4: Front side Plug commander (A 1314)

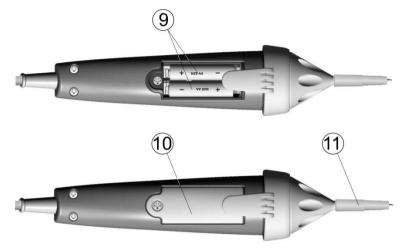


Figure D.5: Back side

1	TEST	TEST Starts measurements.
		Acts also as the PE touching electrode.
2	LED	Left status RGB LED
3	LED	Right status RGB LED
4	LEDs	Lamp LEDs (Tip commander)
5	Function selector	Selects test function.
6	MEM	Store / recall / clear tests in memory of instrument.
7	BL	Switches On / Off backlight on instrument
8	Lamp key	Switches On / Off lamp (Tip commander)
9	Battery cells	Size AAA, alkaline / rechargeable Ni-MH
10	Battery cover	Battery compartment cover
11	Cap	Removable CAT IV cap (Tip commander)

C.4 Operation of commanders

Warning! Dangerous voltage on the commander's PE terminal!		
Fail indication		
Pass indication		
Commander is monitoring the input voltage		
Voltage between any test terminals is higher than 50 V		
Low battery		
Battery voltage too low for operation of commander		

Appendix D – Structure objects

Structure elements used in Memory Organizer are instrument's Profile dependent.

Symbol	Default name	Description
2	Node	Node
	Object	Object
	Dist. board	Distribution board
= =	Sub D. Board	Sub Distribution board
> •	Local bonding	Local equipotential bonding
W	Water Service	Protective conductor for Water service
0	Oil service	Protective conductor for Oil service
L	Lightn. protect.	Protective conductor for Lightning protection
G	Gas service	Protective conductor for Gas service
S	Struct. steel	Protective conductor for Structural steel
	Other service	Protective conductor for Other incoming service
C	Earthling cond.	Earthing conductor
	Circuit	Circuit
>•	Local bonding	Local equipotential bonding
Œ	Connection	Connection
•	Socket	Socket
(Connection 3-ph	Connection - 3 phase
	Light	Light
•	Socket 3-ph	Socket - 3 phase
ΦĐ	RCD	RCD
=	MPE	MPE
<u></u>	Foundation gr.	Protective conductor for Foundation ground
R	Equip. bond. rail	Equipotential bonding rail
<u> </u>	House water m.	Protection conductor for House water meter
	Main water p.	Protection conductor for Main water pipes
=	Main gr. cond.	Main grounding conductor
*	Inter. gas inst.	Protective conductor for Interior gas installation
	Heat.inst.	Protective conductor for Heating installation
*	Air cond. inst.	Protective conductor for Air conditioning installation
<u></u>	Lift inst.	Protective conductor for Lift installation

@	Data proc. Inst.	Protective conductor for Lift Data processing installation
™	Teleph. Inst.	Protective conductor for Telephone installation
(Lightn. prot. syst.	Protective conductor for Lightning protection system
(1)	Antenna inst.	Protective conductor for Antenna installation
	Build. Constr.	Protective conductor for Building construction
> °	Other conn.	Other connection
1	Earth electrode	Earth electrode
+	Lightning Sys.	Lightning System
⁄	Lightning. electr.	Lightning electrode
~	Inverter	Inverter
	String	String array
iii	Panel	Panel