

Digital Filter Applications

Useful Applications of the Digital Filter Package 2 (DFP2)

TECHNICAL BRIEF

June 13, 2013

Summary

Filters are useful components in the analysis of signals in an oscilloscope. This technical brief provides examples.

Introduction

Filters are circuits or devices in which the output gain and phase vary as a function of the frequency of the input. This frequency sensitivity makes them useful in removing undesirable elements of a signal or compensating for some frequency dependent distortion within the signal. Teledyne LeCroy's Digital Filter Package 2 (DFP2) option, for oscilloscopes, offers a selection of several standard (infinite impulse response or finite impulse response) filters including low pass, high pass, band pass or band stop filters or a user defined, custom digital filter configuration. These can be applied in the analysis and measurement of waveforms as illustrated in the examples, which follow.

The first class of applications to be shown is the removal of undesirable spectral components of a signal. Figure 1 contains an example of a waveform which consists of a 4 MHz square wave combined with an unwanted 5 MHz sinusoidal component.

Figure 1: Using a band stop filter to remove a 5 MHz sinusoidal signal from a 4 MHz square wave

The time domain view of this signal is shown in trace C1 and zoom trace Z1 and the frequency spectrum is shown in trace F1. By applying a band stop filter with band limits of 4.5and 5.5 MHz the unwanted 5 MHz component is attenuated and the 4 MHz square wave is evident at the

filtered output (Trace F2 and Zoom Z2). The spectrum of the filter output (Trace F3) shows the reduction in the 5 MHz component.

Figure 2 shows how a high pass filter is used to eliminate 60 Hz pickup from a 63 kHz pulse width modulated signal. The high pass filter is set to attenuate signals lower than 200 Hz thereby removing the 60 Hz signal.

Ê File I Vertical ↔ Ti	mebase Trigger	🖿 Display 💉 Cursors	E Measure	🖬 Math	🗠 Analysis	🗙 Utilities	Support				
	$\checkmark \checkmark$		$\mathbf{\mathbf{W}}$	\checkmark							
			den a bermen in da marinda	in a sector and the sector at		ala ana ana ana ana ana ana ana ana ana	sadda palaca y la populación				
	in which	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	22	L.		m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	wyy	
C1 USEU F1 FF1 200 mV/div 20.0 di -278.0 mV 10.0	F(C1) F4 filter(F3) B/div 100 mV/div 1 kHz 20.0 ms/div	F5 FFT(F4) <mark>Z1</mark> zo 20.0 dB/div 20.0 10.0 kHz 100	om(F1) <mark>Z3</mark> zc dB/div 19.0 Hz/div 100	oom(F5) 0 dB/div 0 Hz/div					Tbase 2 MS	-96.8 ms 20.0 ms/div 10 MS/s Edge P	0 mV ositive
Math F11 F2 F	3 F4 F5 F	6 1 (F 7) (F8)					Zoom Fil	ter Frequencies	Frame		Close
Trace On single dual f(x) g(f(x)	Source1 F3	Operato Filter	1	-Summary-	filter(F3)		FIR / IIR FIR Auto Ler	Filter High Pass	Kind Reframe Output		
graph web edit	Actions for trace F4 Measure	Store Labe		ext	Hel Simpl	lp Markers e	Suggest 14175	ed Taps		6/11/2013 8:25 1	19 AM

Figure 2: Using a high pass filter to eliminate 60 Hz pickup

If the acquired signal has a shaped baseline, as shown in Figure 3, it is possible to use a low pass filter to separate the baseline and then subtract it from the acquired waveform. In this example a low pass filter (Trace F2) is used to extract the baseline which is then subtracted from the acquired signal (C1) in trace F3.

ê Fil	t Vertical	↔ Timebase	Trigger	🖬 Display	Cursors	🗄 Measure	🖬 Math	🗠 Analysis	🗙 Utilities	 Support 						
C1																
											-					-
F2		+ + +	+ + +	+ + +						+ + +						
F3																
<mark>C1</mark> 2	DC50 F2 00 mV/div 0.00 mV	filter(C1) F3 100 mV/div 5.00 µs/div	(C1-F2) 200 mV/div 5.00 µs/div											Timebase 5.0 125 kS	0.0 µs Trig 10 µs/div Stop 2.5 GS/s Edg	per C1 DC 4 mV e Positive
Math	FI E	F3 F4	F5 F	8 F7	F81					Zoom	Filter	Frequencies	Frame			Close
	race On	Sourc C1		Oper Filter						FIR / IIF FIR		Filter Kind Low Pass				
si	igle dua (×) g(f(ব					Summary	filter(C1)		🖌 Auto			Reframe Output			
gr 4	aph web	dit Action:	for trace F2	Store			lert	Help M Simple		Sugges 887						
TELEI	TELEDINE LEGROY BILLION BILLIO															

Figure 3: Removing baseline shaping by separating and subtracting the low frequency content of an acquired waveform

The last of our spectral separation examples, Figure 4, shows the use of a low pass filter in a detector simulation. Modulation from an amplitude modulated signal is extracted by peak detection and filtering. The absolute value function performs full wave peak detection and the DFP 2 option provides the necessary low pass filtering to remove the residual carrier form the detected waveform.

Figure 4: Using peak detection and filtering to demodulate an AM signal

These examples provide a sense of how the DFP2 filters can be applied to aid your analysis.