

LeCroy Application Brief No. LAB_WM824

Plug-ins Using VB.NET
Creating CustomDSO Plug-ins Using Visual Basic.NET

LeCroy’s CustomDSO feature, in-
cluded in the XDEV Customization
option, enables the creation of cus-
tom user interfaces, using pro-
gramming languages capable of
creating ActiveX Controls.

At its announcement, the pro-
gramming language that was the
best match for creating these
plug-ins was Microsoft’s Visual
Basic 6.0. Since then, Microsoft
has moved its focus onto its
“.NET” technology and has made it
more difficult to create “Legacy”
ActiveX controls, using the latest
version of Visual Basic.

Figure 1. A simple CustomDSO Plug-in

Figure 2. A plug-in created with VB .NET

However, armed with the informa-
tion contained within this Applica-
tion Brief, you can successfully
create plug-ins using Visual Ba-
sic .NET 2003.

Note: Since part of the procedure
involves typing in several lines of
VB code it will be much easier to
work from the electronic version of
this document, where copy and
paste commands can be used to
eliminate typing errors.

LeCroy Application Brief No. LAB_WM824

1. Open Visual Studio .NET 2003 and select the File->New->Project menu item.

2. Select Visual Basic Projects on the left, and Windows Control Library on the right.

3. Enter a project name and directory into the dialog box that appears and click OK. Give the proper

name to the project you want to use on the scope interface when you install it. The syntax which
will be used on the CustomDSO menu of the scope will be:
<Project Name>.<VB.NET class>
Where <VB.NET class> is the name of the Code/Object of your project; for example, in the Solu-
tion Explorer below, the Project Name is “CrossTrigg” while the VB.NET class is “toolbox.vb”.
Therefore under CustomDSO menu of the scope, the plug-in name to install will be:
“CrossTrigg.toolbox”

LeCroy Application Brief No. LAB_WM824

4. For demonstration purposes, drag a button from the toolbox onto the dialog:

5. Open the project properties and check the Register for COM Interop box (be sure to do this for

both Debug and Release builds):

LeCroy Application Brief No. LAB_WM824

6. Right-click on the dialog, and select View Code

7. Merge the code below into the source file. Note that the line that starts Public Class UserCon-

trol1 (in the example below is Public Class Toolbox) and the line following it should already be
in the empty project.

8. The section in red color is the GUIDs section. The GUIDs used below (ClassId, InterfaceId and

EventsId) should be unique and, therefore, should be regenerated using the MS “GuidGen” tool.
For demonstration purposes the ones below will work, but only for the first plug-in built; second
and subsequent plug-ins built using this method require unique IDs. To generate another three IDs
for ClassId, InterfaceId and EventId you have to go to Tools --> Create GUID.Then, in the pop-up
window, select the GUID format number 4 (Registry Format) and click on “New GUID”.

Now you can copy it into the clipboard with the relative button and paste it into the local field.
You have to repeat this procedure three times, one for each “Id”. Note finally that when you paste
the key, you have to manually modify it to remove any extra parentheses.

LeCroy Application Brief No. LAB_WM824

Option Strict Off
Imports System.Runtime.InteropServices
Imports System.Text
Imports System.IO
Imports System.Reflection
Imports Microsoft.Win32
Imports System
Imports System.Threading
Imports System.Math
Imports Microsoft.Office.Core
Imports Microsoft.Vbe.Interop
Imports System.Windows.Forms
Imports Office = Microsoft.Office.Core

Imports Excel = Microsoft.Office.Interop.Excel

<ComClass(Toolbox.ClassId, _
 Toolbox.InterfaceId, _
 Toolbox.EventsId)> _

Public Class Toolbox

 Inherits System.Windows.Forms.UserControl

#Region "COM GUIDs"

 ' These GUIDs provide the COM identity for this class

 ' and its COM interfaces. If you change them, existing

 ' clients will no longer be able to access the class.

 Public Const ClassId As String = "EBDB73C5-AAD9-4f7d-9979-1C9EFA684BEE"

 Public Const InterfaceId As String = "8F49323F-537B-4bc8-B48D-027FDFF71322"

 Public Const EventsId As String = "94578994-2F8C-438f-AE92-BB7CBB734DA0"

#End Region

 ' This function is called when registered (no need to change it)

 <ComRegisterFunction()> _

 Private Shared Sub ComRegister(ByVal t As Type)

 Dim keyName As String = "CLSID¥" & t.GUID.ToString("B")

 Dim key As RegistryKey = Registry.ClassesRoot.OpenSubKey(keyName, True)

 key.CreateSubKey("Control").Close()

 Dim subkey As RegistryKey = key.CreateSubKey("MiscStatus")

 subkey.SetValue("", "131457")

 subkey = key.CreateSubKey("TypeLib")

 Dim libid As Guid = Marshal.GetTypeLibGuidForAssembly(t.Assembly)

 subkey.SetValue("", libid.ToString("B"))

 subkey = key.CreateSubKey("Version")

 Dim ver As Version = t.Assembly.GetName().Version

 Dim version As String = String.Format("{0}.{1}", ver.Major, ver.Minor)

 If version = "0.0" Then version = "1.0"

 subkey.SetValue("", version)

 End Sub

LeCroy Application Brief No. LAB_WM824

' This is called when unregistering (no need to change it)
 <ComUnregisterFunction()> _
 Private Shared Sub ComUnregister(ByVal t As Type)
 ' Delete entire CLSID¥{clsid} subtree
 Dim keyName As String = "CLSID¥" + t.GUID.ToString("B")
 Registry.ClassesRoot.DeleteSubKeyTree(keyName)

 End Sub

9. When you start placing forms within the class (like buttons, checkboxes, etc.), a region just below

the previous code will be generated. It starts with “#Region " Windows Form Designer generated
code "”.
The region is split into several sections but the first one is a very important subroutine, since all
the code you want to execute at startup must be placed within it, just after InitializeComponent()
call (as commented in the box below).

#Region " Windows Form Designer generated code "

 Public Sub New()
 MyBase.New()
 'This call is required by the Windows Form Designer.
 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 End Sub

10. Hooking the UI to the X-Stream automation interface using VB is simple, as the following exam-

ple shows. This will program the DSO’s horizontal scale (T/Div) when Button1 is clicked.

‘ Note that the following Sub is Private so if it will be the only one in the Class

‘ you must declare it Public otherwise at least another one must be Public

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click

 Dim o As Object

 o = CreateObject("LeCroy.XStreamDSO.1")

 o.Acquisition.Horizontal.HorScale = 0.0000002

End Sub

11. To polish the component, and to integrate seamlessly into the X-Stream User Interface, change the
following properties of the dialog and controls in it.

Dialog Size: 792,168 pixels
Dialog Background: 66, 55, 114 (fairly dark blue)
Button Background: 112, 104, 160 (lighter blue)
Button Text: 255, 255, 255 (white)

12. After you finish your plug-in and you want to try it, you have to install it on the scope. In this case

you need to add a solution to your project with the Setup Wizard. Follow the steps below:

LeCroy Application Brief No. LAB_WM824

i. Click on File --> New --> Project and configure the panel as below (New Project
panel).

ii. In step 2 of 5 select the options as below (Setup Wizard 2 of 5 panels).
iii. In the step 3 of 5, configure the panel as below.
iv. Finish the setup wizard procedure.
v. Under menu Build --> Configuration Manager, be sure that your panel looks like

the one below.
vi. Under menu Build, select Build solution, then you will find in the project folder,

the setup directory with three files (Setup.exe, Setup.msi, and Setup.ini); those
three files must be copied into a folder on the scope’s hard disk and installed using
Setup.Exe.

vii. Activate CustomDSO plug-in in the scope and enter the proper name for the
plug-in, as explained at the beginning of this document.

