

1

Application Brief LAB_831 TECHNICAL BRIEF

Rev 2

X-Stream COM Object

Programming with MATLAB
®

Understanding the MATLAB Syntax for Interfacing with

the LeCroy X-Stream COM Object Server

Introduction .. 2

About MATLAB ... 2

The LeCroy Oscilloscope COM Object Server ... 2

XStream Browser ... 3

Connecting to the Oscilloscope Application ... 4

Recommended Coding Methodology ... 5

Frequently Used Code Blocks .. 6

Code Creation Recipes .. 7

Additional Tips and Tricks .. 10

Conclusion .. 11

2

Introduction

Beginning with MATLAB R14, the syntax required to access properties in a hierarchical object changed

significantly. For example in R13, the code to read back the time per point was the following:

get(app.Acquisition.Horizontal.TimePerPoint,’Value’) % <= R13

Beginning with R14, the code is now:

 get(app.Object.Item(‘Acquisition’).Object.Item(‘Horizontal’).Item(‘TimePerPoint’),’Value’) % >=R14

This syntax to communicate with a hierarchical object can be difficult to get right, and the applicability of

the Object.Item and Item constructs depend on the property being referenced. This document provides

a higher-level understanding of the interface so that users can write the code necessary to access any

scope property – without “guesswork.”

About MATLAB

MATLAB® is an interactive software environment and programming language from The MathWorks

used to control instruments, make measurements, analyze data, create GUI-based applications, and

build test systems. MATLAB provides interactive graphical tools and command-line functions for data

analysis tasks such as digital filtering, signal processing, signal modulation, curve fitting, and statistical

analysis.

MATLAB itself supports communication with instruments (including LeCroy oscilloscopes) using its

Instrument Control Toolbox. The toolbox supports TCP/IP communication (whether you install MATLAB

on a remote PC or directly on the LeCroy oscilloscope), MATLAB instrument drivers, and a graphical

user interface (GUI) called Test & Measurement Tool that allows to communicate with the instrument

without writing MATLAB code. How to use MATLAB in this way is outside the scope of this application

brief. However, you can download a Getting Started Guide called “Using MATLAB with LeCroy

Oscilloscopes in 15 Minutes” at www.mathworks.com/lecroy.

The LeCroy Oscilloscope COM Object Server

In addition to supporting the familiar ASCII-based remote commands that have been used to control all

LeCroy DSOs for many years, all of the Windows-based “X-Stream” oscilloscopes fully support control

by Automation interfaces based on Microsoft‟s Component Object Model (COM). Using COM, the

controlling application can run directly on the instrument without requiring an external controller; or,

alternatively, it can run using Microsoft‟s distributed COM standard (DCOM) on a networked computer.

The oscilloscope application is a COM object server, with an object structure that is composed of many

systems, including Acquisition, Math, and Measure, to name just a few. (Such a server is sometimes

referred to as an automation server.) Each system can include subsystems; for example, the

http://www.mathworks.com/lecroy

3

Acquisition system includes the C1, C2, C3, C4, Horizontal and Trigger subsystems. The result is a

multi-tiered hierarchy that requires users to “drill” into the hierarchy to get to the desired property,

method or action.

XStream Browser

LeCroy provides an object browser called XStream Browser that is pre-installed on all its Windows-

based oscilloscopes. You can find a link to it on the desktop of your LeCroy scope. Use this application

to determine where to find the objects, properties, actions and methods required by your application. It

can also be used indirectly to determine the syntax for your MATLAB code.

Figure 1 shows the XStream Browser application. Its user interface has a look that is similar to

Windows Explorer; the left-hand frame of the window uses a “tree” control to let users navigate through

the object hierarchy, and the right-hand frame shows the items.

Note in figure 1 the “folders” in the left-hand frame. The systems represented by yellow folders can be

considered as objects, and may contain subfolders, which are child objects. Purple folders (typically

called Result) are objects, but are handled in a slightly different manner. Result folders contain your

measurement and waveform results. Pink folders are “collections” and are not addressed in this

version of the document.

Most items in the right-hand frame (except within Result folders) are control variables, or CVARs for

short. CVARs provide an interface for accessing scope configurations and for executing methods and

actions. When viewed from XStream Browser, many CVARs appear to be properties, but are actually

objects with properties such as Value, Name, Type and Range, to name a few. The right-hand frame

includes columns for several of the more useful properties of each CVAR.

4

Figure 1 – View of XStream Browser. The left-hand frame shows the scope application object hierarchy;

the right-hand frame shows control variables for the selected left-hand frame object.

Connecting to the Oscilloscope Application

To make a connection to the oscilloscope application, use MATLAB‟s actxserver command:

app = actxserver('LeCroy.XStreamDSO.1', '172.28.15.55')

The first argument is the ProgID; it always should be set to 'LeCroy.XStreamDSO.1'. The second

argument is the scope‟s IP address. When running MATLAB on the scope, use the IP address

127.0.0.1, which is the self-referencing IP address. Note that when running MATLAB from a remote PC,

you need to configure Windows to allow DCOM connections on both the remote PC and on the

oscilloscope. (See the DCOM setup in the Automation Manual for detailed instructions.)

5

Recommended Coding Methodology

Given the complexity of MATLAB‟s syntax for handling multi-tiered automation objects, it is highly

recommended to create object variables at each level of the hierarchy. In MATLAB, this kind of

variable is referred to as a handle. This simplifies the code, makes it more readable and easier to

debug. Here are some examples of object variables that can be directly used in your script for

referencing app.Acquisition.C1.Out.Result, app.Measure.P1.Out.Result and

app.Math.F1.Out.Result.

% Instantiate of Scope Application object at the IP address referenced.

% (Use 127.0.0.1 when running MATLAB on the scope)

app = actxserver('LeCroy.XStreamDSO.1', '172.28.15.55')

% creation of object variables 1 level down from top-level

acq = app.Object.Item('Acquisition');

math = app.Object.Item('Math');

meas = app.Object.Item('Measure');

PF = app.Object.Item('PassFail');

% creation of object variables 1 level further

c1 = acq.Object.Item('C1');
f1 = math.Object.Item('F1');

p1 = meas.Object.Item('P1');

p1Operator = p1.Object.Item('Operator')

% creation of object variables to results

c1_results = c1.Out.Result;

f1_results = f1.Out.Result;

p1_results = p1.Out.Result;

When using object variables, the code to access results and to get or set properties becomes much

easier to read and debug:

% Set some properties for P1

% (assumes P1=per@level or other parameter with similar CVARS)

set(p1Operator, 'LevelType', 'Percent');

set(p1Operator, 'PercentLevel', 66);

set(p1Operator, 'Slope', 'Neg');

% Read back and display some results

p1_Val = p1_results.Value

p1_status = p1_results.Status

p1_time = p1_results.FirstEventTime

The following code is equivalent, but doesn‟t use intermediate object variables. (Note the smaller font

size!)

% Equivalent code without use of object variables

set(app.Object.Item('Measure').Object.Item('P1').Object.Item('Operator'), 'LevelType', 'Percent')

set(app.Object.Item('Measure').Object.Item('P1').Object.Item('Operator'), 'PercentLevel', 66)

set(app.Object.Item('Measure').Object.Item('P1').Object.Item('Operator'), 'Slope', 'Neg')

val = get(app.Object.Item('Measure').Object.Item('P1').Out.Result, 'Value');

status = get(app.Object.Item('Measure').Object.Item('P1').Out.Result, 'Status');

evtime = get(app.Object.Item('Measure').Object.Item('P1').Out.Result, 'FirstEventTime');

6

Frequently Used Code Blocks

This section includes blocks of code that are frequently used by customers:

A) Accessing channel results

% drill into hierarchy to C1 results

app = actxserver('LeCroy.XStreamDSO.1', '172.28.15.55')
acq = app.Object.Item('Acquisition');

c1 = acq.Object.Item('C1');

c1_results = c1.Out.Result;

% Get entire data array

c1_data = get(c1_results, 'DataArray', -1, -1, 0, 1);

% Get C1 properties

c1_AcqTStamp = c1_results.FirstEventTime;

c1_status = c1_results.Status;

c1_NumSweeps = c1_results.Sweeps;

c1_VperStep = c1_results.VerticalPerStep;

B) Accessing Parameter results

% Drill into hierarchy to P1 results

app = actxserver('LeCroy.XStreamDSO.1', '172.28.15.55')
meas = app.Object.Item('Measure');

p1 = meas.Object.Item('P1');

p1_results = p1.Out.Result;

p1_meanresults = p1.Object.Item('mean').Result;

p1_numresults = p1.Object.Item('num').Result;

% Get entire value array

P1_array = get(p1_results, 'ValueArray', -1, 0, 1)

% Get last measured value and other properties

p1_Val = p1_results.Value

p1_status = p1_results.Status

p1_statdesc = p1_results.StatusDescription

p1_res = p1_results.VerticalResolution

p1_time = p1_results.FirstEventTime

p1_mean = p1_meanresults.Value

p1_num = p1_numresults.Value

7

Code Creation Recipes

1) Recipe for creating code that access CVARS that are of type Out.Result or Collections

This recipe applies to control variables that are in the right-hand frame when selecting an object

that is represented by a yellow folder in XStream Browser.

A) Find the control variable in XStream Browser. For example, the VerScale CVAR is used to

program the volts per division for the input channels. The path to this is

app.Acquisition.C1.VerScale

B) For each object in the hierarchy, use the Object.Item(„Object Name‟) syntax to create an object

variable for that level of the hierarchy. For example, the following lines of code drill into the

hierarchy to the “folder” containing the VerScale CVAR.

app = actxserver('LeCroy.XStreamDSO.1', '172.28.15.55')
acq = app.Object.Item('Acquisition');

c1 = acq.Object.Item('C1');

Note that lines 2 and 3 use the object variable created in the line before it. The result is that you
have a set of object variables to use rather than the long and clumsy line of code such as the
one at the beginning of the document.

meas = app.Object.Item('Measure');

p1 = meas.Object.Item('P1');

p1_meanresults = p1.Object.Item('mean').Result;

p1_numresults = p1.Object.Item('num').Result;

C) For control variables with values that you can read or write, use the get and set functions to

access properties of the control variable. The Value property is most frequently used, but others

are available, including Range.

Here are examples of getting and setting properties of the VerScale CVAR for channel 1:

% read the value of the VerScale CVAR.

C1VDiv = get(c1.Item('VerScale'), 'Value')

% read the Range and Type properties of the VerScale CVAR

range = get(c1.Item('VerScale'), 'Range')

type = get(c1.Item('VerScale'), 'Type')

% set VerScale to 0.789 V/div

set(c1.Item('VerScale'), 'Value', 0.789)

D) For control variables that are Actions, use the invoke function. Action CVARs have an interface
called ActNow that can be referenced, but this isn‟t required.

% execute an application-level Clear Sweeps action

app.invoke('ClearSweeps','ActNow');

8

% execute an AutoSetup action

app.invoke('AutoSetup','ActNow');

% execute the ResetAll action for the Math system

math.invoke('ResetAll','ActNow');

E) For control variables that are Methods, use the invoke function, and include the arguments
required to perform the method (see the Automation manual for details)

% execute the Acquire method with 5s timeout, without forcing a trigger

acq.invoke('Acquire', 5, false);

2) Recipe for accessing items within Out.Result Objects

This recipe applies to control variables that are in the right-hand frame when selecting an object

that is represented by a purple folder in XStream Browser.

A) Find the control variable in XStream Browser. For example, the Value property for P1 is

available when a measurement parameter P1 is configured and turned on. The path to this is

app.Measure.P1.Out.Result.Value. Note that Value is a property rather than a CVAR; this is

the biggest difference between items under a Results folder rather than a yellow folder like the

Acquisition object, which has CVARs listed in the right-hand pane when selected.

B) For each object in the hierarchy up to but not including the Result object’s parent object, use

the Object.Item(„Object Name‟) syntax to create an object variable for that level of the

hierarchy.

For example, the following lines of code drill into the hierarchy to the P1 object, which is the

Result object‟s parent object‟s (“Out”) parent.

app = actxserver('LeCroy.XStreamDSO.1', '172.28.15.55')

meas = app.Object.Item('Measure');

p1 = meas.Object.Item('P1');

C) Create an object variable for the Result object using this syntax:

p1_results = p1.Out.Result

D) To read properties within the Result object, use one of the two syntaxes:

p1_val = p1_results.Value

or

p1 = get(p1_results,'Value')

9

Clearly the first syntax is easier on the eyes, especially when you are returning multiple Result

properties:

E) To read back multi-valued data such as the DataArray and ValueArray properties use the get

function. ValueArray, which returns all measured values for a parameter, and DataArray, which

returns the data for a waveform. DataArray and ValueArray are actually interfaces that require

several arguments that determine the number of values to return what kind of values, etc. See

the Automation Manual (rev B or higher) for information on accessing ValueArray and

DataArray.

P1_array = get(p1_results, 'ValueArray', -1, 0, 1)

C1_data = get(c1_results, 'DataArray', -1, -1, 0, 1)

10

Additional Tips and Tricks

In MATLAB, a semicolon suppresses the output that is otherwise generated. Leave off the semicolon

when developing your code in order to glean some insight about the oscilloscope object structure.

Examples:

A) Creation of object variable to the Acquisition object

>> acq = app.Object.Item('Acquisition')

 acq =

 Interface.LeCroy_Maui_Persona_Interfaces_1.0_Type_Library.ILecMauiAcquisitionAutomation

B) Creation of object variable to a parameter Result object

>> P1OutResult = P1.Out.Result

 P1OutResult =

 Interface.LeCroy_ResultAutomationInterfaces_1.0_Type_Library.ILecAutomationParamResult

C) Creation of object variable to a waveform Result object

>> C1_Result = C1.Out.Result

C1_Result =

 Interface.LeCroy_ResultAutomationInterfaces_1.0_Type_Library.ILecAutomationWformResult

Note the slight difference in the interface between B and C; B is a ParamResult, while C is a

WformResult

D) The inspect function can be used to quickly see the property values of a CVAR:

>> inspect(c1.Item('VerScale'))

11

Conclusion

Every programming language has syntax requirements, and learning the correct syntax can often be

challenging and time consuming. The time required to learn LeCroy X-Stream COM object

programming with MATLAB can be reduced by taking time to understand the underlying methodology

of both the LeCroy X-Stream object hierarchy and MATLAB software environment. For more

information, see both MATLAB and X-Stream documentation.

MATLAB® is a registered trademark of The MathWorks, Inc.

